MODEL 372XXB VECTOR NETWORK ANALYZER

MAINTENANCE MANUAL

490 JARVIS DRIVE 1 MORGAN HILL, CA 95037-2809

P/N: 10410-00182 REVISION: D PRINTED: JUNE 2000 COPYRIGHT 1996 ANRITSU CO.

WARRANTY

The ANRITSU product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment.

ANRITSU's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to ANRITSU for warranty repairs. Obligation is limited to the original purchaser. ANRITSU is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to ANRITSU connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

V Connector and K Connector are registered trademarks of ANRITSU Company. ANACAT is a registered trademark of EEsof, Inc. Ink Jet and Think Jet are registered trademarks of Hewlett-Packard Co. MS-DOS is a registered trademark of Microsoft Corporation.

NOTICE

ANRITSU Company has prepared this manual for use by ANRITSU Company personnel and customers as a guide for the proper installation, operation and maintenance of ANRITSU Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of ANRITSU Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of ANRITSU Company.

DECLARATION OF CONFORMITY

Manufacturer's Name: ANRITSU COMPANY

Manufacturer's Address: Microwave Measurements Division 490 Jarvis Drive Morgan Hill, CA 95037-2809 USA

declares that the product specified below:

Product Name:	Microwave Vector Network Analyzers					
Model Number:	371XXA, 372XXA, 372XXB, 373XXA					

conforms to the requirement of:

EMC Directive 89/336/EEC as amended by Council Directive 92/31/EEC & 93/68/EEC Low Voltage Directive 73/23/EEC as amended by Council directive 93/68/EEC

Electromagnetic Interference:

Emissions: CISPR 11:1990/EN55011:1991 Group 1 Class A Immunity: IEC 1000-4-2:1995/prEN50082-1:1995 - 4kV CD, 8kV AD IEC 1000-4-3:1993/ENV50140:1994 - 3V/m IEC 1000-4-4:1995/prEN50082-1:1995 - 0.5kV SL, 1kV PL IEC 1000-4-5:1995/prEN50082-1:1995 - 0.5kV - 1kV LN 0.5kV - 1kV NG 0.5kV - 1kV GL

Electrical Safety Requirement:

Product Safety:

IEC 1010-1:1990 + A1/EN61010-1:1993

Manager of Corporate Quality 5-SEPT-97

Morgan Hill, CA

European Contact: For Anritsu product EMC & LVD information, contact Anritsu LTD, Rutherford Close, Stevenage Herts, SG1 2EF UK, (FAX 44-1438-740202)

Table of Contents, Narrative

Chapter 1 — General Service Information

This chapter provides a general description of Series 372XXB Vector Network Analyzer systems, system serial numbers, and frequency ranges. It explains the level of maintenance covered in this manual and the service strategy used throughout this manual. It also contains static-sensitive component handling precautions and a list of recommended test equipment.

Chapter 2 — Replaceable Parts

This chapter lists all replaceable subassemblies and components for all 372XXB models. It explains the ANRITSUexchange assembly program and provides parts ordering information.

Chapter 3 — **Operational Tests**

This chapter contains procedures that provide a means of fully testing the 372XXB VNA system for proper operation and signal stability. These tests are intended to be used as a periodic check of the operational functionality of the 372XXB.

Chapter 4 — **Performance Verification Procedures**

This chapter provides detailed procedures for verifying that the performance of the 372XXB meets minimum performance standards.

Chapter 5 — **Troubleshooting**

This chapter provides information for troubleshooting Series 372XXB Vector Network Analyzer systems. The troubleshooting procedures contained in this chapter support fault isolation down to a replaceable subassembly.

Chapter 6 — Adjustments

This chapter provides adjustment procedures for all models of Series 372XXB Vector Network Analyzer systems. These procedures are used after replacement or repair of one or more critical subassemblies, or as indicated by the Performance Verification Procedures contained in Chapter 4.

Chapter 7 — System Description

This chapter provides descriptions of the functional operation of the major assemblies contained in Series 372XXB Vector Network Analyzer systems. The operation of all major circuit blocks is described so that the reader may better understand the function of each assembly as part of the overall operation.

Chapter 8— Removal and Replacement Procedures

This chapter describes how to gain access to all of the major assemblies and major parts for ¬trouble-shooting and/or replacement.

Appendix A — **Diagnostic Menus**

This appendix contains descriptions and usage information for the Diagnostic Menus that are available via the front panel Option Menu key.

Appendix B — Error Codes/Messages

This appendix contains a listing of the Error Codes/Messages. Also included is a description of the information fields that are part of the error messages.

Appendix C — Connector Maintenance Check Procedures

This appendix contains procedures and information needed to perform maintenance checks (including pin-depth measurements) for the connectors on all ANRITSU supplied Calibration/Verification Kit components, Through-cables, and other associated RF/microwave components.

Appendix D — **Performance Specifications**

Appendix E — Verification Software Users Guide

This appendix contains the Model 360X/372XXB VNA Performance Verification Software Users Guide, P/N: 10410-00162. This Software Users Guide explains in detail the procedures to be used for the installation and operation of the 372XXB VNA Verification Software on your computer/controller.

Index

Table of Contents

Chapter 1 General Information

1-1	SCOPE OF MANUAL · · · · · · · · · · · · · · · · · · ·
1-2	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
1-3	IDENTIFICATION NUMBER · · · · · · · · · · · · · · · · · · ·
1-4	ONLINE MANUAL · · · · · · · · · · · · · · · · · · ·
1-5	SYSTEM DESCRIPTION · · · · · · · · · · · · · · · · · · ·
1-6	RELATED MANUALS · · · · · · · · · · · · · · · · · · ·
1-7	STANDARD OPTIONS · · · · · · · · · · · · · · · · · · ·
1-8	SERVICE STRATEGY1-5Functional Assembly Level Troubleshooting1-5Internal Hardware Adjustments and Calibrations1-5Internal Service Log1-5System Test/Certification1-6Preventive Service1-6Servicing Specially Modified Instruments1-6SERVICE SUPPORT INFORMATION1-6Service Software1-7Field Service Kits1-7Verification Kits1-8Test Fixtures/ Aids1-8Failed Assembly Exchange Program1-8
1-10	PERFORMANCE SPECIFICATIONS · · · · · · · · · · · · · · · · · 1-9
1-11	SERVICE CENTERS · · · · · · · · · · · · · · · · · · ·
1-12	STATIC SENSITIVE COMPONENT HANDLING PROCEDURES1-9
1-13	RECOMMENDED TEST EQUIPMENT · · · · · · · · · · · · · · · 1-9

Chapter 2 Replaceable Parts

2-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
2-2	EXCHANGE ASSEMBLY PROGRAM · · · · · · · · · · · · 2-3
2-3	REPLACEABLE SUBASSEMBLIES AND PARTS · · · · · · 2-3
2-4	PARTS ORDERING INFORMATION · · · · · · · · · · · · · · · · 2-4

Chapter 3 Operational Tests

3-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
3-2	CHECKING THE SERVICE LOG · · · · · · · · · · · · · · · · · · ·
3-3	SELF TEST · · · · · · · · · · · · · · · · · · ·
3-4	PERIPHERALS AND INTERFACES
3-5	SIGNAL PATH · · · · · · · · · · · · · · · · · · ·

Chapter 4 Performance Verification

4-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
4-2	CALIBRATION AND MEASUREMENT CONDITIONS4-3Standard Conditions4-3Special Precautions:4-4
4-3	MEASUREMENT ACCURACY · · · · · · · · · · · · · · · · · · ·
4-4	VERIFICATION PROCEDURE:
4-5	MEASURING KEY PARAMETERS

Chapter 5 Troubleshooting

5-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
5-2	ASSOCIATED INFORMATION · · · · · · · · · · · · · · · · · · ·
5-3	RECOMMENDED TEST EQUIPMENT · · · · · · · · · · · · · · · · 5-4
5-4	SYSTEM DOES NOT POWER-UP5-4Line Source and Interface Checks5-4Power Supply Voltages Check5-4Power Supply Module Check5-6
5-5	SYSTEM DOES NOT BOOT-UP5-7Boot-up Process Sequence5-7Troubleshooting Boot-up Problems5-8Hard Disk Problem 15-8Hard Disk Problem 25-9Floppy Disk Problems5-9Screen Display Problems5-10
5-6	SYSTEM PRODUCESERROR CODE5-10Phase Lock Error Codes (6000 Series)5-11Service Log Snap Shot Data5-12
5-7	SOURCE/TEST SET/RECEIVER5-17Signal Source Phase Lock Loop Assemblies5-17Signal Source/Test Set Module Error Codes5-18Isolation Procedures5-19
5-8	PERIPHERALS/ INTERFACE TEST5-21CRT Display Test Failures:5-21Front Panel Test Failures:5-22External Keyboard Interface Test Failures:5-22Printer Interface Test Failures:5-22GPIB Interface Test Failures:5-22
5-9	MEASUREMENTS IN QUESTION · · · · · · · · · · · · · · · · · · ·
Chapter 6	

Adjustments

6-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
6-2	LO1 CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure · · · · · · · · · · · · · · · · · · ·
	Post Calibration Actions $\cdot \cdot \cdot$

6-3	LO 2 CALIBRATION6-4Calibration Procedure6-4Post Calibration Actions6-5
6-4	FREQUENCY CALIBRATION 6-5 Calibration Procedure 6-6 Post Calibration Actions 6-7
6-5	RF POWER/ALC CALIBRATION6-8Calibration Procedure6-9Post Calibration Actions6-10
6-6	SOURCE LOCK THRESHOLD6-11Calibration Procedure6-11Post Calibration Actions6-12
6-7	A8 ADJUSTMENT · · · · · · · · · · · · · · · · · · ·
6-8	A21A2 ADJUSTMENT · · · · · · · · · · · · · · · · · · ·

Chapter 7 System Description

7-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
7-2	SYSTEM OVERVIEW · · · · · · · · · · · · · · · · · · ·
7-3	ANALOG SUBSYSTEM ASSEMBLIES7-7Signal Source Module7-7Test Set Module7-8A7 PCB, 10 MHz Timebase7-9Receiver Module7-10A8, Source Lock/ Signal Separation and Control PCB7-11IF Section7-11A7 PCB, LO37-12A5 A/D Converter PCB7-12
7-4	DIGITAL SUBSYSTEM ASSEMBLIES
7-5	MAIN CHASSIS ASSEMBLIES · · · · · · · · · · · · · · · · · · ·

Front Panel Assembly · · · · ·		•	•	•		•	•	•	•	•	•	•	•	•	•	7-16
Rear Panel Assembly · · · · · ·	•	•	•	•		•	•	•	•	•	•	•	•	•	•	7-17
A18 Rear Panel Interface PCB.	•	•	•	•		•	•	•	•	•	•	•	•	•	•	7-17
Power Supply Module · · · · ·	•	•	•	•		•	•	•	•	•	•	•	•	•	•	7-18
Internal VGA Monitor · · · · ·	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	7-19

Chapter 8 Remove and Replace Procedures

8-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
8-2	EQUIPMENT REQUIRED · · · · · · · · · · · · · · · · · · ·
8-3	COVERS · · · · · · · · · · · · · · · · · · ·
8-4	A1–A9/A13–A16 PCBS · · · · · · · · · · · · · · · · · · ·
8-5	A9 PCB BBRAM CHIP · · · · · · · · · · · · · · · · · · ·
8-6	A9 PCB SRAM BATTERY · · · · · · · · · · · · · · · · · · ·
8-7	A24 VME PCB · · · · · · · · · · · · · · · · · · ·
8-8	FRONT PANEL ASSEMBLY · · · · · · · · · · · · · · · · · · 8-13
8-9	VGA MONITOR · · · · · · · · · · · · · · · · · · ·
8-10	LIQUID CRYSTAL DISPLAY (LCD) · · · · · · · · · · · · · · 8-16
8-11	LCD BACKLIGHT LAMP · · · · · · · · · · · · · · · · · · ·
8-12	FLOPPY DISK DRIVE · · · · · · · · · · · · · · · · · · ·
8-13	REAR PANEL ASSEMBLY · · · · · · · · · · · · · · · · · · ·
8-14	FAN ASSEMBLY · · · · · · · · · · · · · · · · · · ·
8-15	POWER SUPPLY MODULE · · · · · · · · · · · · · · · · · · ·
8-16	A18 REAR PANEL PCB · · · · · · · · · · · · · · · · · · ·
8-17	TEST SET MODULE ASSEMBLIES 8-25 Transfer Switch 8-25 Input Coupler(s)/ Low Freq Bridge(s) 8-26 Power Amplifier 8-26 Buffer Amplifier/ Sampler(A31) 8-27

	Switched Doubler Module Assembly $\cdots \cdots \cdots \cdots \cdots \cdots \cdots $ 8-28
8-18	SIGNAL SOURCE MODULES · · · · · · · · · · · · · · · · · · 8-29
	Removal of Signal Source Module · · · · · · · · · · · · · · · 8-29
	A21A2 Source Control PCB · · · · · · · · · · · · · · · · · · ·
	A21A1 Source YIG Bias Control PCB · · · · · · · · · · · · 8-32
	Switched Filter
	Assembly
	Down Converter Assembly · · · · · · · · · · · · · · · · · · ·
	YIG Oscillator Assembly · · · · · · · · · · · · · · · · · · ·

Appendix A Diagnostics Menus

A-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
A-2	DIAGNOSTICS MENUS · · · · · · · · · · · · · · · · · · ·
	Start Self Test · · · · · · · · · · · · · · · · · · ·
	Read Service Log · · · · · · · · · · · · · · · · · · ·
	Installed Options · · · · · · · · · · · · · · · · · · ·
	Peripheral Tests · · · · · · · · · · · · · · · · · ·
	Troubleshooting · · · · · · · · · · · · · · · · · · ·
	H/W Calibrations

Appendix B Error Messages

B-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
B-2	OPERATIONAL ERROR MESSAGES · · · · · · · · · · · · · · · · · · ·
B-3	DISK RELATED ERROR MESSAGES · · · · · · · · · · · · · · · · · · B-3
B-4	GPIB RELATED ERROR MESSAGES · · · · · · · · · · · · · · · · · B-3
B-5	SERVICE LOG ERROR MESSAGES

Appendix C Connector Maintenance Check Procedures

C-2	PRECAUTIONS · · · · · · · · · · · · · · · · · · ·
	Pin-Depth Tolerance · · · · · · · · · · · · · · · · · · ·
	Avoid Over Torquing Connectors
	Teflon Tuning Washers · · · · · · · · · · · · · · · · · · ·
	Avoid Mechanical Shock · · · · · · · · · · · · · · · · · · ·
	Keep Connectors Clean · · · · · · · · · · · · · · · · · · ·
	Visual
	Inspection · · · · · · · · · · · · · · · · · · ·
C-3	REPAIR/ MAINTENANCE · · · · · · · · · · · · · · · · · · ·

Appendix D Performance Specifications

Appendix E Performance Verification Software User's Guide

Subject Index

Chapter 1 General Information

Table of Contents

1-1	SCOPE OF MANUAL · · · · · · · · · · · · · · · · · · ·
1-2	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
1-3	IDENTIFICATION NUMBER · · · · · · · · · · · · · · · · · · ·
1-4	ONLINE MANUAL · · · · · · · · · · · · · · · · · · ·
1-5	SYSTEM DESCRIPTION · · · · · · · · · · · · · · · · · · ·
1-6	RELATED MANUALS · · · · · · · · · · · · · · · · · · ·
1-7	STANDARD OPTIONS · · · · · · · · · · · · · · · · · · ·
1-8	SERVICE STRATEGY1-5Functional Assembly Level Troubleshooting1-5Internal Hardware Adjustments and Calibrations1-5Internal Service Log1-5System Test/Certification1-6Preventive Service1-6Servicing Specially Modified Instruments1-6SERVICE SUPPORT INFORMATION1-6Field Service Kits1-7Field Service Kits1-7Verification Kits1-8
	Test Fixtures/ Aids······1-8 Failed Assembly Exchange Program ·····1-8
1-10	RECOMMENDED TEST EQUIPMENT · · · · · · · · · · · · · · · · · · ·
1-11	STATIC SENSITIVE COMPONENT HANDLING PROCEDURES · · · · · · · · · · · · · · · · · · ·
1-12	SERVICE CENTERS · · · · · · · · · · · · · · · · · · ·
1-13	PERFORMANCE SPECIFICATIONS · · · · · · · · · · · · · · · · · · ·

NOTE: ANRITSU Company was formerly known as WILTRON Company.

Figure 1-1. Series 372XXB Vector Network Analyzer System

Chapter 1 General Information

1-1	SCOPE OF MANUAL	This manual provides general service and preventive maintenance in- formation for the ANRITSU 372XXB family of Vector Network Analyzer (VNA) systems. It contains procedures for:
		Testing the instrument for proper operation.
		Verifying measurement accuracy and traceability to National In- stitute of Standards and Technology (NIST).
		Troubleshooting a failed instrument to the exchange subassembly level or the subsystem requiring adjustment.
		Adjusting instrument internal sub-systems.
		Locating and replacing failed parts.
		Throughout this manual, the terms "372XXB" and "372XXB VNA" will be used interchangeably to refer to all Series 37200B Network Analyzer system models, unless otherwise noted.
1-2	INTRODUCTION	This chapter of the manual provides a general description of 372XXB VNA systems, system serial numbers, frequency ranges, and related manuals. Also included is information about the level of maintenance covered in this manual, service strategy, available service facilities, and static-sensitive component handling precautions. A list of recommended test equipment is also provided.
1-3	IDENTIFICATION NUMBER	All ANRITSU instruments are assigned a six-digit ID number, such as "401001". This number appears on a decal affixed to the rear panel. Please use this identification number during any correspondence with ANRITSU Customer Service about this instrument.
1-4	ONLINE MANUAL	This manual is available on CD ROM as an Adobe Acrobat [™] (*.pdf) file. The file can be viewed using Acrobat Reader [™] , a free program that is also available on the CD ROM. This file is "linked" such that the viewer can choose a topic to view from the displayed "bookmark" list and "jump" to the manual page on which the topic resides. The text can also be word-searched. Contact ANRITSU Customer Service for price and availability.

1-5 system description

372XXB Model Frequencies

Model	Freq Range
37217B	22.5 MHz to 8.6 GHz
37225B	40.0 MHz to 13.5 GHz
37247B	40.0 MHz to 20.0 GHz
37269B	40.0 MHz to 40.0 GHz
37297B	40.0 MHz to 65.0 GHz

The 372XXB Analyzers are microprocessor controlled Vector Network Analyzers. Each is a single-instrument system that contains a built-in signal source, a test set, and an analyzer subsystem. A typical model (37269B) is shown in Figure 1-1. These analyzers are produced in five models that cover a range of from 22.5 MHz to 65 GHz. The table at left lists the frequencies for each model.

1-6 RELATED MANUALS

The 372XXB Vector Network Analyzer Operation Manual (10410-00180) describes the front panel operation for all 372XXB models. It also contains general information, specifications, and Performance Verification procedures for all models.

The 37XXX Series Vector Network Analyzer Programming Manual (10410-00200) describes all 372XXB GPIB commands and provides programming information for operation of the 372XXB remotely via the IEEE-488 General Purpose Interface Bus. Included at the rear of this manual is the 37XXX Series Vector Network Analyzer GPIB Quick Reference Guide (10410-00201).

Model 360X/372XXB VNA Performance Verification Software Users Guide, P/N: 10410-00162 (located in Appendix E at the rear of this manual). This Software Users Guide explains in detail the procedures to be used for the installation and operation of the 372XXB VNA Verification Software on your computer/controller.

1-7 STANDARD OPTIONS The standard 372XXB VNA options and their respective Upgrade Kit part numbers are:

Option *	Description	Upgrade Kit
Opt 1	Rack Mount with slides	ND39486
Opt 1A	Rack Mount	ND40916
Opt 2A	Time Domain (Microwave Units)	ND39477
Opt 2B	Time Domain (RF Units)	ND40914
Opt 10A	High Stability Ovenized Time Base	ND45045

* All options listed can be installed at ANRITSU Service Centers

1-8	SERVICE STRATEGY	This paragraph provides an overview of the 372XXB VNA service strat- egy and available service facilities. It also provides references to the infor- mation in various locations in this manual needed to accomplish the ser- vice functions required for the 372XXB VNA.
		Appendices - Refer to the Appendices at the rear of this manual for de- tailed descriptions of the following:
		Diagnostics Menus and GPIB Commands.
		□ Error Messages.
		System Block Diagrams.
		Parts Locator Diagrams.
	Functional Assembly Level Troubleshooting	The 372XXB modular design, extensive built-in diagnostics, and auto- mated service tools are designed to support fast exchange of functional as- sembly level repairs.
		Failed assemblies are not field repairable. Once an assembly is found to be faulty, it should be returned to an authorized ANRITSU Service Center for exchange. Refer to the description of the Exchange Assem- bly Program in Chapter 2, Replaceable Parts.
		The procedures for troubleshooting a failed 372XXB VNA are de- scribed in this manual in Chapter 5, Troubleshooting.
	Internal Hardware Adjustments and Cal- ibrations	There are five automated internal hardware field calibrations. Two of them are used to characterize the 372XXB frequency and power genera- tion sub-systems. These calibrations insure fast, consistent phase lock of system frequencies and proper compensation, leveling, and flatness of system power at the front panel test ports.
		To conduct these calibrations, you need only connect the appropriate test equipment (counter or power meter) to the 372XXB and initiate the calibration. The 372XXB will control itself and the externally con- nected test equipment to perform measurements and store calibration constants in its internal battery backed RAM (BBRAM).
		The procedures for adjusting the 372XXB VNA are described in this manual in Chapter 6, Adjustments.
	Internal Service Log	The 372XXB continuously monitors itself for proper operation. Should a failure occur, it notifies the user via a failure message on the display screen. (In remote-only operation, it also sets the GPIB Status Byte, if enabled.) It also writes the error message along with some data pertinent to the failure to an internal service log stored in battery backed memory.
		The service log can be checked at any time to view (without erasing) all error messages that were written into it. It is capable of storing

SERVICE SUPPORT INFORMATION

more than 30 pages of service messages and data. The 372XXB will automatically remove the oldest errors first to make room for new errors, if necessary. To check the contents of the service log, use the procedure described in Chapter 3, Operational Tests.

NOTE

	A printed or disk file copy of the Service Log (with the fail- ure in question) must be made available to ANRITSU when exchanging a failed assembly, or when requesting service support. Refer to Chapter 2, Replaceable Parts, for further information.
System Test/Certification	Quick operational checkout of the system may be accomplished by the system user or for incoming inspection purposes using the "Operational Checkout" chapter in the 372XXB Operations Manual. Those procedures are useful in quickly verifying that the instrument's primary measure- ment functions are operational and stable.
	Full operational testing of the system is detailed in Chapter 3, Opera- tional Tests. These tests should be performed annually, or more often depending on system use.
	Verification of the system's measurement accuracy and other key per- formance parameters may be done using the procedures in Chapter 4, Performance Verification. This should be performed annually, or more often depending on system use.
Preventive Service	The 372XXB A9 Processor PCB contains a battery backed memory/real time clock chip (BBRAM) and a static memory (SRAM) backup battery. These have a finite life span and should be replaced periodically per the procedures in Chapter 8, Removal and Replacement Procedures.
	The BBRAM chip has a rated life span of 4 years. The SRAM backup battery has a worst case elapsed time for SRAM battery protection of 200 days. The SRAM battery life span will vary according to how the system is used; that is, how often the system is powered off for ex- tended periods of time.
Servicing Specially Modified Instruments	Instruments with customer requested special modifications performed by ANRITSU will have an identifying Specials Modification number printed on the rear panel. This number will be preceded with the letters SM, i.e., SM1234 is special modification number 1234.
	Special instruments may have service requirements different from those specified in this manual. Contact your local Service Center if you need more information when servicing such instruments.
1-9 SERVICE SUPPORT INFORMATION	The following paragraphs briefly describe the various service support services and aids available to you to help you maintain your 372XXB.

SERVICE SUPPORT INFORMATION

Technical Support Technical service support is available by contacting any ANRITSU Worldwide Service Center (refer to paragraph 1-11). Or, service support may be obtained directly from the factory by contacting:

ANRITSU Company ATTN: Customer Service 490 Jarvis Drive Morgan Hill, CA 95037-2809

Telephone: (408)-778-2000 FAX: (408)-778-0239

If servicing or repairing your own system and you need technical support, you will need to FAX or mail a printout of the items listed below to the ANRITSU Customer Support Engineer:

- **D** Measurement data in question
- "Operational Tests" results
- □ System state (from UTILITY menu)
- □ Service Log (from DIAGNOSTICS menu)
- *Field Service Kits* The field service kit listed below is available through your local ANRITSU Sales or Service Center:

ND37200A-2, Field Service Kit

This kit provides for automated field test and performance verification of the 372XXB. It is packaged in a hardened rolling case that also has space for two, user supplied, verification and calibration kits and other accessories.

The ND37200A-2, Field Service Kit is comprised of all major subassemblies of all models 40 Ghz and below high-end frequency.

ND53269, Field Service Kit

This kit provides for automated field test and performance verification of the 372XXB 65 GHz models (37397A). It supplements kit ND37200A-2.

Service Software The service software listed below is contained on the diskette located at the rear of this manual:

ANRITSU 37XXX Test Software (2300-178).

This software contains a series of automated tests designed to insure the 372XXB signal paths are functioning properly and capable of supporting stable calibrations and measurements. See Operational Tests Chapter for details.

ANRITSU 37XXX Performance Verification Software (2300-237).

This software is used to verify the 372XXB published measurement accuracy and traceability to the U.S. National Institute of Standards and Technology (NIST). See Chapter 4, Performance Verification, for details.

Verification Kits	The ANRITSU Verification Kits listed below are used in conjunction with the 37XXX Performance Verification Software (above). See Chapter 4, Performance Verification, for further information.
	N Verification Kit (Model 3663) Contains precision N Connector components that are traceable to the NIST. Use for Model 37217B and below, with Option 7N or 7NF.
	GPC-3.5 Verification Kit (Model 3666) Contains precision Connector components that are traceable to the NIST. Use for Model 37247B and below with Option 7S.
	GPC-7 Verification Kit (Model 3667) Contains precision GPC-7 Connector components whith characteristics that are traceable to the NIST. Use for Models 37217B and below with Option 7A.
	K Verification Kit (Model 3668) Contains precision K Connector components that are traceable to the NIST.
	V Verification Kit (Model 3669B) Contains precision V Connector components that are traceable to the NIST.
Test Fixtures/ Aids	The test fixtures and test aids listed below are available through your lo- cal ANRITSU Sales or Service Center:
	Rear Panel Printer Port Test Fixture (B39553). This test fixture is used to check out digital printer interface circuits on the rear panel assembly.
	GPIB Cable (2100-2). This cable is used to check out digital GPIB interface circuits on the rear panel assembly.
Failed Assembly Exchange Program	The exchange program allows a customer to quickly exchange a failed subassembly for a factory refurbished, fully system-tested and unit that is under warranty. This results in significant time and price savings as com- pared with ordering a new assembly.
	Refer to Chapter 2, Replaceable Parts, for a complete list of exchange- able assemblies for all Series 372XXB models.
	<i>NOTE</i> When sending a failed assembly to the factory for ex- change, a copy of the Service Log must always accom- pany the failed assembly. Refer to Chapter 2, Replaceable Parts, for further information.

GENERAL INFORMATION

PERFORMANCE SPECIFICATIONS

1-10	PERFORMANCE SPECIFICATIONS	The performance specifications for all Series 372XXB models are con- tained in the Technical Data Sheets that are located in Appendix D, Performance Specifications.
1-11	SERVICE CENTERS	ANRITSU Company offers a full range of repair and calibration services at fully staffed and equipped service centers throughout the world. Table 2-1, located on page 2-4, lists all ANRITSU services centers.
1-12	STATIC SENSITIVE COMPONENT HANDLING PROCEDURES	The 372XXB contains components that can be damaged by static electric- ity. Figure 1-2 illustrates the precautions that should be followed when handling static-sensitive subassemblies and components. If followed, these precautions will minimize the possibilities of static-shock damage to these items.
1-13	RECOMMENDED TEST EQUIPMENT	Table 1-1 lists the recommended test equipment to be used for all mainte- nance activities for all Series 372XXB models. Note the "Use" codes listed in the right hand column of the table. These codes list the appli- cable maintenance activities for the equipment listed.

Table 1-1. Recommended	l Test Equipment (1 of 2	り
------------------------	--------------------------	---

INSTRUMENT	CRITICAL SPECIFICATION	RECOMMENDED MANUFACTURER/MODEL	USE**
Computer/Controller	Equipped with National Instruments GPIB In- terface Adapter, w/Driver Software V2.1 or later	ANRITSU 360CC or 360CC-2, with a PCII/IIA, or, ANRITSU 360CC-3 and RS-232/GPIB-US (or -UK/ -EU)	O, P
Test Software		ANRITSU 2300-178	0
Floppy Disk	Formatted, IBM PC format	DS/HD 1.44 Mbyte	A
GPIB Cable		ANRITSU 2100-2, or equivalent	O, P, A
RF/Microwave Cable	DC to 65 Ghz, K or V type connectors. Length, 2 ft.	ANRITSU 3670K50-2 or 3670V50-2	P, A
BNC Cable	Length, 4 ft., 2 each	Any	0
Printer Port Test Fixture		ANRITSU B39553	0
Thru Line	For models 37217B and below For models 37225B and above:	ANRITSU 3670A50-2, 3671A50-2 ANRITSU 3670K50-2, 3671K50-2	0, P
Calibration Kit	For models 37217B and below, with Opt 7A: For models 37217B and below, with Opt 7N or 7NF:	ANRITSU 3651-1* ANRITSU 3653	O, P
	For models 37225B and above: For models 37247B and below, with Opt 7S: For model 37297B	ANRITSU 3652-1* ANRITSU 3650-1* ANRITSU 3654B	
Performance Verifica- tion Software		ANRITSU 2300-237	Р
Connector Verification Kit	For models 37217B and below w/Opt 7A: For models 37217B and below, with Opt 7N	ANRITSU 3667	Р
	For models 37225B and above:	ANIA 30 3003	
	For models 37247B and below, with Opt 7S:	ANRITSU 3668 ANRITSU 3666	
	For model 37297B	ANRITSU 3669B	

* Calibration Kit sliding load (Option {-1}), required for Performance Verification only.

** USE CODES:

A Adjustment / Internal Hardware Calibration

O Operational Testing

P Performance Verification

T Troubleshooting

GENERAL INFORMATION

RECOMMENDED TEST EQUIPMENT

INSTRUMENT	CRITICAL SPECIFICATION	RECOMMENDED MANUFACTURER/MODEL	USE**
Assurance Air Line	For models 37217B and below w/Opt 7A: For models 37217B and below w/Opt 7N: For models 37217B and below w/Opt 7NF: For models 37225B and above: For models 37247B and below w/Opt 7S:	ANRITSU 18A50 ANRITSU 18NF50 ANRITSU 18N50 ANRITSU T1519 ANRITSU T1147-2	Р
Offset Termination	For models 37217B and below w/Opt 7A, 7N, 7NF: All other models having K connectors	ANRITSU 29A50-20 ANRITSU 29KF50-15	Р
Frequency Counter	Frequency: 0.1 to 26.5 GHz Input Impedance: 50W	EIP Microwave, Inc., Model 578B	P, A
Digital Multimeter	Resolution: 4½ digits DC Accuracy: 0.1 % AC Accuracy: 0.1 %	Any	Т
Oscilloscope	<i>Bandwidth:</i> DC to 100 MHz <i>Sensitivity:</i> 2 mV <i>Horiz. Sensitivity:</i> 50 ns/division	Tektronix, Inc. Model 2445	Т
Power Meter 1, with:	Power Range: -30 to +20 dBm (1 mW to 100 mW) Other: GPIB controllable	HP 437B with Option 22 (GPIB)	P, A
Power Sensor 1 or: Power Meter 2, with: Power Sensor 2	Frequency Range: 0.05 to 50 GHz Power Range: -70 to +47 dBm (100 pW to 50 W) Other: GPIB controllable Frequency Range: 0.01 to 40 GHz	HP 8487A Gigatronics 8541 or 8542 Gigatronics 80304A	P, A
Power Meter and Power Sensor	Frequency Range: to 65 GHz	Anritsu Model ML24xxA Power Meter and MA2474A (40 GHz and below) and Model SC6230 (to 65 GHz) Power Sensors	
Gauging Set	GPC-7 Gauging Set K Connector Gauging Set	ANRITSU 01-161 ANRITSU 01-162	О, Т

Table 1-1. Recommended Test Equipment (2 of 2)

O Operational Testing

P Performance Verification

T Troubleshooting

COMPONENT HANDLING

GENERAL INFORMATION

1. Do not touch exposed contacts on any static sensitive component.

Do not slide static sensitive component across any surface.

2.

5.

 Do not handle static sensitive components in areas where the floor or work surface covering is capable of generating a static charge.

 Wear a static-discharge wristband when working with static sensitive components.

Label all static sensitive devices. 6.

Keep component leads shorted together whenever possible.

 Handle PCBs only by their 8. edges. Do not handle by the edge connectors.

Lift & handle solid state devices by their bodies – never by their leads.

- 9. Transport and store PCBs and other static sensitive devices in static-shielded containers.

- **10. ADDITIONAL PRECAUTIONS:**
- Keep workspaces clean and free of any objects capable of holding or storing a static charge.
- Connect soldering tools to an earth ground.
- Use only special anti-static suction or wick-type desoldering tools.

Figure 1-2. Static Sensitive Component Handling Procedures

Chapter 2 Replaceable Parts

Table of Contents

2-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
2-2	EXCHANGE ASSEMBLY PROGRAM · · · · · · · · · · · · · 2-3
2-3	REPLACEABLE SUBASSEMBLIES AND PARTS · · · · · · 2-3
2-4	PARTS ORDERING INFORMATION · · · · · · · · · · · · · · · 2-4

Chapter 2 Replaceable Parts

2-1 INTRODUCTION This chapter provides replaceable parts information for all 372XXB models. The major replaceable 372XXB assemblies and parts are listed in Tables 2-2 through 2-7. The locations of these assemblies/parts are shown in Figures 2-1 through 2-3. 2-2 EXCHANGE ASSEMBLY ANRITSU maintains a module exchange program for selected subassem-PROGRAM blies. If a malfunction occurs in one of these subassemblies, the defective item can be exchanged. Upon receiving your request, ANRITSU will ship the exchange subassembly to you, typically within 24 hours. You then have 45 days in which to return the defective item. All exchange subassemblies or RF assemblies are warranted for 90 days from the date of shipment, or for the balance of the original equipment warranty, whichever is longer.

NOTE

When sending a failed assembly to the factory for exchange, a copy of the Service Log **must always** accompany the failed assembly. This copy may be a printout, or a saved disk copy. Due to the importance of the service log information to the ANRITSU factory Service Engineers, the exchange prices are only valid if the service log data is included with the failed assembly.

Please have the exact model number and serial number of your unit available when requesting this service, as the information about your unit is filed according to the instrument's model and serial number. For more information about the program, contact your local sales representative or call ANRITSU Customer Service direct (refer to paragraph 2-4.

2-3 REPLACEABLE SUBASSEMBLIES AND PARTS Tables 2-2 through 2-5, (starting page 2-5) list the major replaceable subassemblies and parts for the 372XXB. These assemblies/parts are presently covered by the ANRITSU exchange assembly program. Table 2-6 (page 2-6) lists disposable parts for the 372XXB, and Table 2-7 lists factory-repairable parts for the 372XXB. (The parts listed in Tables 2-6 and

NOTE

The 372XXB A17 Motherboard PCB Assembly is not a field-replaceable item.

2-7 are not presently on the exchange assembly program.)

PARTS ORDERING INFORMATION

GENERAL INFORMATION

2-4 PARTS ORDERING INFORMATION

All parts listed in Tables 2-2 through 2-7 may be ordered from your local ANRITSU service center (Table 2-1). Or, they may be ordered directly from the factory at the following address:

ANRITSU Company ATTN: Customer Service 490 Jarvis Drive Morgan Hill, CA 95037-2809

Telephone: (408)-778-2000 FAX: (408)-778-0239

Table 2-1. ANRITSU Service Centers

UNITED STATES

ANRITSU COMPANY 490 Jarvis Drive Morgan Hill, CA 95037-2809 Telephone: (408) 778-2000 FAX: (408) 778-0239

ANRITSU ANRITSU COMPANY 685 Jarvis Drive Morgan Hill, CA 95037-2809 Telephone: (408) 776-8300 FAX: (408) 776-1744

ANRITSU ANRITSU COMPANY 10 Kingsbridge Road Fairfield, NJ 07004 Telephone: (201) 227-8999 FAX: (201) 575-0092

AUSTRALIA

ANRITSU PTY. LTD. Level 2, 410 Church Street North Parramatta NSW 2151 Australia Telephone: 026-30-81-66 Fax: 026-83-68-84

BRAZIL

ANRITSU ANRITSU ELECTRONICA LTDA. Praia de Botafogo, 440-SL 2401-Botafogo 2225-Rio de Janeiro-RJ-Brasil Telephone: 021-28-69-141 Fax: 021-53-71-456

CANADA

ANRITSU ANRITSU INSTRUMENTS LTD. 215 Stafford Road, Unit 102 Nepean, Ontario K2H 9C1 Telephone: (613) 828-4090 FAX: (613) 828-5400

CHINA

ANRITSU BEIJING SERVICE CENTER 416W Beijing Fortune Building 5 Dong San Huan Bei Lu Chao Yang Qu, Beijing 100004, China Telephone: 86-1-50-17-559 FAX: 86-1-50-17-558

FRANCE

ANRITSU ANRITSU S.A 9 Avenue du Quebec Zone de Courtaboeuf 91951 Les Ulis Cedex Telephone: 016-44-66-546 FAX: 016-44-61-065

GERMANY

ANRITSU ANRITSU GmbH Rudolf Diesel Strabe 17 8031 Gilching Telephone: 08-10-58-055 FAX: 08-10-51-700

INDIA

MEERA AGENCIES (P) LTD. A-23 Hauz Khas New Delhi 110 016 Telephone: 011-685-3959 FAX: 011-686-6720

ISRAEL

TECH-CENT, LTD Haarad St. No. 7, Ramat Haahayal Tel-Aviv 69701 Telephone: (03) 64-78-563 FAX: (03) 64-78-334

ITALY

ANRITSU ANRITSU Sp.A Roma Office Via E. Vittorini, 129 00144 Roma EUR Telephone: (06) 50-22-666 FAX: (06) 50-22-4252

JAPAN

ANRITSU CORPORATION 1800 Onna Atsugi-shi Kanagawa-Prf. 243 Japan Telephone: 0462-23-1111 FAX: 0462-25-8379

KOREA

ANRITSU CORPORATION #2103 Korea World Trade Center 159-1 Samsung-Dong Kangnam-ku, Seoul Telephone: (02) 551-2250 FAX: (02) 551-4941

SINGAPORE

ANRITSU ANRITSU (SINGAPORE) PTE LTD 3 Shenton Way #24-03 Shenton House Singapore 0106 Telephone: 011-65-2265206 FAX: 011-65-2265207

SWEDEN

ANRITSU ANRITSU AB Box 247 S-127 25 Skarholmen Telephone: (08) 74-05-840 FAX: (08) 71-09-960

TAIWAN

ANRITSU CO., LTD. 8F, No. 96, Section 3 Chien Kuo N. Road Taipei, Taiwan, R.O.C. Telephone: (02) 515-6050 FAX: (02) 509-5519

UNITED KINGDOM

ANRITSU ANRITSU LTD. 200 Capability Green Luton, Bedfordshire LU1 3LU, England Telephone: 05-82-41-88-53 FAX: 05-82-31-303

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Reference Designator	373XXA Option	Assembly / Part	Part Number
A1		LO1	D46866-3
A1		LO1	D86866-4*
A2		LO2	D50725-3
A3		Test A IF	D38503-4
A4		Reference IF	D41794-3
A4		Reference IF	D41794-4*
A5		A/D	D38505-3
A6		Test B IF	D38503-5
A7		LO3	D38507-3
A7	Opt 10	LO3	D38507-4
A8		Source Lock/ Separation Control	D47488-3
A8		Source Lock/ Separation Control	D49334-3*
A9		Main Processor	B38509
A13		I/O #1	D38513-3
A14		I/O #2	D38514-3
A15		Graphics Processor	D44281-3
A16		Hard Disk (w/ PCB)	D41041-3
A18		Rear Panel PCB	D44255-3
A19**		Front Panel Switch PCB	See Table 2-5
A20**		Front Panel Control PCB	
A21A1		Source YIG/Bias Control (p/o Signal Source Module)	D48516-3
A21A1		Source YIG/Bias Control (p/o Signal Source Module)	D48512-3*
A21A2		Source Control (p/o Signal Source Module)	D41841-3
A21A2		Source Control (p/o Signal Source Module)	D48513-3*
A24		VME Bus Terminator	D38524-3

Table 2-2. Printed Circuit Board Assemblies

Required for 37397A
Part of the Front Panel Assembly (refer to Table 2-5).

PARTS ORDERING INFORMATION

Assembly / Part	373XXA Model / Option	Part Number
Transfer Switch	All	D28580-1 46535*
Step Attenuator, 70 dB	All	4612K
Low Frequency Bridge w/ Bias Tee	37311A, 37317A	D28985
Coupler w/ Bias Tee	37325A and higher	D28967
40 GHz Quad Buffer Amp/Power Amplifier	37369A only	ND47533
Switched Doubler Module (SDM)	37369A only	D28685
Port 2 Step Attenuator	All	4612K
6 dB Pad	37369A only	43KC-10
20 dB Pad	37347A and below	43KC-20
20 GHz Quad Buffer Amp/Power Amplifier	All except 37369A	ND47532
* Used on serial numbers 075004_075101_075103_09010	2 080104 080201 080202 080402 080	102 080105

Table 2-3. Test Set Assembly RF/Microwave Components, 37317A, 37325A, 37347A, 37369A

* Used on serial numbers 975004, 975101, 975103, 980102, 980104, 980201, 980302, 980402, 980403, 980405, 980406, 980407, 980602, 980603, 980701, and above.

Table 2-4.	Test Set Assembly H	RF/Microwave	Components,	37397A
------------	---------------------	--------------	-------------	--------

Assembly / Part	Part Number
Pinswitch	29855
Switched Doubler Module (SDM)	47520
Quadrupler (SQM)	48998
37GHz High Pass Filter	49247
Mux Coupler (Port 1)	49470
Mux Coupler (Port 2)	49480
Shaped Pad	52956
Bias Tee	53409
16.8 GHz Lowpass Filter	B28912
Access Loops (Front and Rear Panel)	B35569-195
Transfer Switch	D27030
3 dB Fixed Attenuator	ND26178
Step Attenuator	ND52564
Coupler	ND52929
Quad Buffer Amplifier/Power Amplifier	ND53249

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Assembly / Part	373XXA Model / Option	Part Number
10 MHz Ovenized Oscillator	Opt 10 only	ND39476
Power Supply Module	All	40-116
VGA Monitor	All	2000-322
Floppy Disk Assy	All	C38550
Front Panel Assy (w/ Front Panel, A19 and A20 PCB's, and all Model	All	ND42700
ID Overlays)		
Fan Assembly, Rear Panel	All	B38533
Front Panel Assy (incudes front panel, A19 and A20 PCBs, and all model ID overlays)	LCD Equipped	ND44606
Power Supply	LCD Equipped	40-114
Liquid Crystal Display (LCD)	LCD Equipped	15-88
Liquid Crystal Display (LCD)	LCD Equipped SN:972701 and above	15-92
Liquid Crystal Display (LCD)	LCD Equipped SN:994600 and above	15-100

Table 2-5. Miscellaneous /Integrated Assemblies

Table 2-6. Consummsable Parts

Assembly / Part	373XXA Model / Option	Part Number
System Software	All	2300-212
Front Panel Encoder Knob	All	2000-577
Front Panel Amber Lens	All	790-412
Fuse, 8A, Fast Blow 3AG Cartridge type (F1 Line fuse for power supply assembly)	All	631-72
Battery Backed RAM	All	54-1350
Back-Up Battery	All	633-20
LCD Back Light Driver PCB	LCD Equipped	2000-770
LCD Back Light Lamp	LCD Equipped	632-55

PARTS ORDERING INFORMATION

Table 2-7.	Signal Source	Module RF/	Microwave	Components
	Signal Soulo	mound it it i	marcionare	00111001100

Assembly / Part	373XXA Model / Option	Part Number
YIG Oscillator (2 - 20 GHz)	All	C21620-1
Down Converter	All	D27532
Switched Filter	37317A and below	D45243
Switched Filter	37325A and above	D45244

Table 2-8. Factory Repairable Non-Exchange Parts

Assembly / Part	373XXA Model / Option	Part Number
Test Port Connector, K-Male	All	34UK50
Test Port Connector, GPC-7	Opt 7A only	34UA50
Test Port Connector, 3.5 mm	Opt 7S only	34US50
Test Port Connector, type N	Opt 7N only	34UN50
Test Port Connector, type NF	Opt 7NF only	34UNF50
Test Port Connector, V	37397A	34YV50

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Figure 2-1. 372XXB Major Assemblies Location Diagram (Top ³/₄ View)

PARTS ORDERING INFORMATION

Figure 2-2. 372XXB Major Assemblies Location Diagram (Bottom View)

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Figure 2-3. Mablies Location Diagram (Bottom View) (37397A)

jor Assem-
PARTS ORDERING INFORMATION

Figure 2-4. Signal Source Parts Location Diagram

Chapter 3 Operational Tests

Table of Contents

3-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
3-2	CHECKING THE SERVICE LOG · · · · · · · · · · · · · · · · · · ·
3-3	SELF TEST · · · · · · · · · · · · · · · · · · ·
3-4	PERIPHERALS AND INTERFACES TESTS3-6CRT Display Test3-6Front Panel Test3-7External Keyboard Interface Test3-7Printer Interface Test3-7GPIB Interface Test3-7
3-5	SIGNAL PATH TESTS · · · · · · · · · · · · · · · · · ·

Chapter 3 Operational Tests

3-1 INTRODUCTION

The tests in this section provide a means of fully testing the 372XXB VNA system for proper operation and signal stability. These tests are intended to be used as a periodic check of the operational functionality of the 372XXB.

The tests should be performed in their entirety at least once annually. Although there is no requirement to do so, the tests should generally be run in the sequence presented.

NOTE

The procedures presented in Chapter 4, Performance Verification, provide the means to test the *accuracy* of the tests performed by the 372XXB.

Please ensure you have read and fully understand the servicing concepts for the 372XXB presented in Chapter 1 prior to continuing with this chapter.

Operational Tests for the 372XXB consist of the following:

- □ Checking the Service Log
- Self Test
- **D** Peripherals and Interface Testing
- Signal Path Tests (includes Checking the Service Log and Self Test.)

These tests are described in paragraphs 3-2 through 3-5, which start on the next page. More complete tests may be found in the software program 2300-178, as described in paragraph 4-4.

- *3-2* CHECKING THE SERVICE LOG
- Checking the service log consists of viewing the entries written into the log.

CAUTION

The service log contains historical information about instrument condition and any failures that may have occurred. It should be cleared only by a qualified service engineer. Such clearing shuld be accomplished only upon determining that the errors need not be saved to disk, or printed out for service purposes.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu (left); then select **READ SERVICE LOG** from the DIAGNOSTICS menu.

The 372XXB will now display the contents of the service log. The display consists of a header and an error listing. The header contains a variety of system service information. The error listing contains error messages for failures that may have occurred during operation.

NOTE

Errors 7201–7209, GPIB remote operation programming errors, report that one or more external GPIB programming errors has been detected. These messages do not indicate a 372XXB system fault.

Informational messages 0000–0099 report the pass/fail status of a peripheral access. These messages do not indicate a 372XXB system fault.

Any other error messages in the service log may indicate an instrument problem and should be investigated. Refer to the Chapter 5, Troubleshooting, for further information.

CAUTION

The **CLEAR SERVICE LOG** menu selection will immediately and permanently clear all the error message entries from the service log. (However, it will not clear the header information.) See Caution message at top of page.

3-3 SELF TEST

The self test performs a series of tests that verify that various internal 372XXB circuits are functional and operating properly.

To start the self test:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then select **START SELF TEST** (below).

Step 3. Wait for test sequence to complete. (Once invoked, this test requires no user interaction or external equipment.)

Upon completion, the net pass/fail result of the self test is shown on the CRT display. If the 372XXB is in remote-only operation, the results are reported via the GPIB output buffer. If the self test fails, detailed error messages will be written into the service log.

If self test fails:

□ Check the service log to view failure messages.

□ Proceed to Chapter 5, Troubleshooting.

3-4 PERIPHERALS AND INTERFACES

These tests are used to verify the operation of the CRT display, front panel keys, and peripheral devices that are used with the 372XXB. They consist of the following:

- □ LCD Test
- Front Panel Test
- □ External Keyboard Interface Test
- **D** Printer Interface Test
- **GPIB** Interface Test
- *LCD Test* This test verifies that the 372XXB LCD is functioning correctly.

NOTE

The External VGA Out Connector can also be tested when using this procedure if an external VGA monitor is connected.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **CRT DISPLAY**. See diagram below.

Step 3. Follow instructions on the CRT screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

OPERATIONAL TESTS

Front Panel Test This test verifies that the control keys in each of the 372XXB key groups are functioning correctly.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **FRONT PANEL**. See diagram below.

If test fails, proceed to Chapter 5, Troubleshooting.

External Keyboard This test verifies that the 372XXB external keyboard interface is func-*Interface Test* tioning correctly.

Equipment Required:

An IBM compatible keyboard is required for this test.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **EXTERNAL KEY-BOARD**. See diagram above.
- *Step 3.* Follow instructions on the screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

Printer Interface Test This test verifies that the 372XXB printer interface is functioning correctly.

Equipment Required:

Printer Test Fixture (ANRITSU PN: B39553)

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- **Step 2.** Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **PRINTER IN-TERFACE**. See diagram below.

Step 3. Follow instructions on the screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

OPERATIONAL TESTS

GPIB Interface Test This test verifies that the 372XXB printer interface is functioning correctly.

Equipment Required:

GPIB cable (ANRITSU PN: 2100-2), or equivalent

CAUTION

Insure that no other cables are connected to either of the two rear panel GPIB ports when performing this test.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **GPIB INTER-FACE**. See diagram below.

Step 3. Follow instructions on the screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

3-5	SIGNAL PATH	These are ternal sigr ing stable ing a softw	a series of automated tests designed to insure the 372XXB in- nal paths are functioning properly and are capable of support- calibrations and measurements. These test are performed us- vare test program and an external computer/controller.
		The test s	oftware performs the following operations and tests:
		□ Serv	ice Log Check
		□ Self	Test
		🗆 Basi	c Sweep Operation and Speed Test
		🗆 High	n Level Noise Test
		□ Syste	em Stability Test
		🗆 RF P	Power Generation and Control Test
		□ Vide	o IF Bandwidth Filters Operation Test
		🗆 Sam	pler Efficiency and Stability Test
		□ LO1/	/LO2 Linearity Test
		Sour	rce FM/Lock Signal Linearity Test
		Equipme	nt required:
		37XXX '	Test Software (ANRITSU PN: 2300-178)
		IBM Co	mpatible PC with VGA Graphics Adapter and Mouse
		Externa	l computer/controller; refer to Table 1-1 located on page 1-9.
		GPIB ca	able (ANRITSU PN: 2100-2), or equivalent
		Procedui	re:
		Step 1.	Refer to file "Readme.txt" of the distribution disk for in- formation regarding setup of the computer/controller.
		Step 2.	Using the GPIB cable, connect the external computer/con- troller to the IEEE 488.2 GPIB Interface port on the 372XXB rear panel.
		Step 3.	Program may be run from floppy disk or copied to any

- folder in the computer and run from there.
- **Step 4.** Peform Non-Ratio and Transmission tests.

If any tests fail, refer to the Troubleshooting and Help selections of the Test Software menu for assistance.

Chapter 4 Performance Verification

Table of Contents

4-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
4-2	CALIBRATION AND MEASUREMENT
	CONDITIONS · · · · · · · · · · · · · · · · · · ·
	Standard Conditions · · · · · · · · · · · · · · · · · · ·
	Special Precautions: · · · · · · · · · · · · · · · · · · ·
4-3	VERIFYING MEASUREMENT ACCURACY · · · · · · · · · 4-4
	Verification Software · · · · · · · · · · · · · · · · · · ·
	Verification Result
	Determination · · · · · · · · · · · · · · · · · · ·
4-4	PERFORMANCE VERIFICATION PROCEDURE •••••• 4-5
4-5	MEASUREMENT OF KEY SYSTEM
	PERFORMANCE PARAMETERS · · · · · · · · · · · · · · · · 4-6
	Measurement Environment Considerations · · · · · · · · · · 4-6
	Measurement
	Technique • • • • • • • • • • • • • • • • • • •

Chapter 4 Performance Verification

4-1 INTRODUCTION

This chapter provides specific procedures to be used to verify that the 372XXB is making accurate, traceable S-parameter measurements. You should perform the verification procedures in paragraph 4-3, "Verifying Measurement Accuracy," at least once annually.

Additionally, this chapter includes procedures that may be used to measure the following key system performance parameters:

- □ Effective Source Match
- □ Effective Directivity
- System Dynamic Range
- □ Frequency Accuracy
- Power Level Accuracy

The Operational Tests described in Chapter 3 should be performed prior to verifying system performance.

Please ensure you have read and fully understand the servicing concepts for the 372XXB presented in Chapter 1 prior to continuing with this chapter.

4-2 CALIBRATION AND MEASUREMENT CONDITIONS
Extremes in the surrounding environmental conditions and the condition and stability of the test port connectors, through-cable, and calibration kit determine system measurement integrity to a large extent.

> These are all user controlled conditions, and as such, should be evaluated periodically for impact on system performance. If these conditions vary significantly with time, the system verification procedures should be performed more often than the recommended annual cycle.

Standard Conditions The standard conditions specified below must be observed when performing any of the operations in this chapter — both during calibration and during measurement.

Warm-up Time: One hour minimum.

Environmental Conditions: Temperature: 23 +/- 3 deg C Relative Humidity: 20-50% recommended.

MEASUREMENT ACCURACY

		Error Correction: Full 12 Term sliding load calibration, including isolation, 1024 averages, and 100 Hz Video IF BW setting.
	Special Precautions:	When performing the procedures in this chapter, observe the following precautions:
		 Minimize vibration and movement of system and attached components and through-cable. Clean and check pin depth and condition of all adapters, through-cable(s), and calibration components. Pre-shape the through-cable(s) so as to minimize its movement during calibration and measurement activities. Ensure the system remains motion free in stable environmental conditions as defined above throughout warm-up, calibration, and measurement activities.
<i>4-3</i>	MEASUREMENT ACCURACY	The verification procedures described in the following paragraphs verify the published measurement accuracy and measurement traceability* for the 372XXB.
	Verification Software	These procedures use the ANRITSU VNA Verification Software, PN: 2300-237, and the NIST traceable impedance transfer standards con- tained in the appropriate ANRITSU Verification Kit. The Standard Con- ditions and Special Precautions described in paragraph 4-2 should be observed when performing these procedures.
		The appropriate ANRITSU Verification Kit to be used for performing these procedures is model dependent, as follows:
		 Models 37217B and below, with Opt 7A: Verification Kit 3667 Models 37217B and below, with Opt 7N/NF: Verification Kit 3663 Models 37247B and below, with Opt 7S: Verification Kit 3666: All Standard Models : Verification Kit 3668
		The impedance transfer standards contained in these kits are:
		 20 dB Attenuation Standard 50 dB Attenuation Standard 50 Ohm Air Line Standard 25 Ohm Mismatch (Beatty) Standard
		The verification software performs the following functions:
		 It guides the user through a full 12 Term calibration of the 372XXB. It guides the user through the measurement of the S-parameters of the NIST traceable impedance transfer standards (below).

* Traceability to the U.S. National Institute of Standards and Technology (NIST)

- □ It verifies the measured values are within the specified measurement uncertainty limits.
- □ It indicates the pass/fail status of the measurements on the CRT display. It can also provide a hard copy printout of the measured data, measurement uncertainties, and the impedance transfer standards used.

NOTE

The total verification uncertainty in these 372XXB measurements includes the measurement uncertainty of the verification standards and the 372XXB measurement uncertainty.

Verification ResultThe software verification process compares the measured S-parameter
data of the impedance transfer standards against the original standard
data for those devices that was obtained using the Factory Standard 360
Vector Network Analyzer System (at ANRITSU). The factory Standard
360 system is traceable to NIST through the ANRITSU Calibration Labo-
ratory's Impedance Standards. These standards are traceable to NIST
through precision mechanical measurements, NIST approved microwave
theory impedance derivation methods, and electrical impedance compari-
son measurements.

The quality of the verification results is very dependent on the degree of care taken by the user in maintaining, calibrating, and using the system. The most critical factors are:

- The stability and quality of the devices in the calibration and verification kits.
- **□** The condition of 372XXB test port connectors and through-cables.
- □ The pin depths of all connectors, and the proper torquing of connections. These same factors also affect 372XXB measurement quality.

Consult the Operating Manuals supplied with the ANRITSU Calibration and Verification Kits for proper use, care, and maintenance of the devices contained in these kits.

The performance verification procedure for the ANRITSU 372XXB VNA is described below. Refer also to the Model 360X/37XXX VNA Performance Verification Software Users Guide, P/N: 10410-00162, which is located in Appendix E at the rear of this manual. This Software Users Guide explains in detail the procedures to be used for the installation and operation of the Verification Software on your computer/controller.

Equipment required:

ANRITSU 372XXB Verification Software, PN: 2300-237 (see next page)

External computer/controller; refer to Table 1-1 located on page 1-9.

4-4 VERIFICATION PROCEDURE

MEASURING KEY PARAMETERS

		ANRITS to parag	SU Verification Kit appropriate for the 372XXB model; refer graph 4-3.	
		GPIB cable (ANRITSU PN: 2100-2), or equivalent		
		Procedure:		
		Step 1.	Using the GPIB cable, connect the external computer/con- troller to the IEEE 488.2 GPIB Interface port on the 372XXB rear panel.	
		Step 2.	Insert the 372XXB Verification software into the CD drive. Install the software.	
		Step 3.	Follow the directions displayed on the computer screen to perform all tests.	
			If the calibration fails, check the connectors of the calibra- tion kit devices and the impedance transfer standards for damage, cleanliness, and proper connection and torquing. These are the most common causes for verification failures.	
			If the problem persists, check system Directivity, Match, and Dynamic Range, as described in the next paragraph.	
4-5	MEASURING KEY PARAMETERS	The follow ment of th ment of th it is highly ment envi ments.	ing paragraphs describe procedures for automated measure- e key system performance parameters listed below. Measure- ese parameters is not required for system verification; however, recommended to ensure that the complete 372XXB measure- ronment is stable and capable of supporting accurate measure-	
		□ Effe	ctive Source Match	
		□ Effe	ctive Directivity	
		□ Syst	em Dynamic Range	
		🗆 Freq	uency Accuracy	
		D Powe	er Level Accuracy	
	Measurement Environment Considerations	As with th system per measurem	e verification procedures, the quality of the measurement of the rformance parameters listed above is very dependent on the ent environment.	
		The compl	ete 372XXB measurement environment consists of:	
		 Conditition kit Setting temperatem per 	on and stability of the test ports, through-cable, and calibra- mating connectors. s and stability of the surrounding environment, especially ature, humidity, and vibration. To maintain the highest sys- formance, avoid changing these conditions, especially tem-	

PERFORMANCE VERIFICATION

MEASURING KEY PARAMETERS

perature, during warm-up, calibration, and when making measurements on your DUT.

□ The use of proper microwave connector mating techniques.

MeasurementThe measurements of the key system performance parameters are per-
formed using the ANRITSU 37XXX Test Software, PN: 2300-178.

NOTE

The Standard Conditions and Special Precautions described in paragraph 4-2 should be observed when performing these measurements.

The software will use the following standards to determine system performance values:

- □ Assurance Air Line Set
- **D** Offset Termination
- **Gamma** Frequency Counter
- **D** Power Meter

Equipment required:

37XXX Test Software (ANRITSU PN: 2300-178)

External computer/controller; refer to Table 1-1 located on page 1-9.

GPIB cable (ANRITSU PN: 2100-2), or equivalent

Measurement Procedure:

- *Step 1.* Refer to file "Readme.txt" of the distribution disk for information regarding setup of the computer/controller.
- *Step 2.* Using the GPIB cable, connect the external computer/controller to the the 372XXB IEEE 488.2 GPIB rear panel connector.
- *Step 3.* Program may be run from floppy disk or copied to any folder in the computer and run from there.
- *Step 4.* Follow the directions displayed on the computer screen to perform all tests.

NOTE

Some tests require that the first test selected *must* be the 12-Term Calibration. The software will guide you through this calibration.

If any tests fail, refer to the Troubleshooting and Help selections of the Test Software menu for assistance.

Chapter 5 Troubleshooting

Table of Contents

5-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
5-2	ASSOCIATED INFORMATION IN THIS MANUAL ••••• 5-3
5-3	RECOMMENDED TEST EQUIPMENT · · · · · · · · · · · · · · · · · · ·
5-4	IF SYSTEM DOES NOT POWER-UP5-4Line Source and Interface Checks5-4Power Supply Voltages Check5-4Power Supply Module Check5-6
5-5	IF SYSTEM DOES NOT BOOT-UP.5-7Boot-up Process Sequence5-7Troubleshooting Boot-up Problems5-8Hard Disk Problem 15-8Hard DiskProblem 25-9Floppy DiskProblems5-9Screen DisplayProblems5-9
5-6	IF SYSTEM PRODUCES AN ERROR CODE5-10Phase LockError Codes (6000 Series)5-11Service Log Snap Shot Data5-12
5-7	SIGNAL SOURCE, TEST SET, AND RECEIVERPROBLEMSSignal Source Phase Lock Loop AssembliesSignal Source/Test Set Module Error CodesSource/Test
5-8	IF A PERIPHERALS/ INTERFACE TEST FAILED5-17CRT Display Test Failures:5-17Front Panel TestFailures:5-17External Keyboard Interface Test Failures:5-18Printer Interface TestFailures:5-18GPIB Interface TestFailures:5-18
5-9	IF MEASUREMENTS ARE IN QUESTION · · · · · · · · · · · 5-18 Measurement Conditions Check List · · · · · · · · · · · · · · · 5-18

Many of the troubleshooting procedures presented in this chapter require the removal of instrument covers to gain access to printed circuit assemblies and other major assemblies.

WARNING

Hazardous voltages are present inside the instrument when ac line power is connected. Turn off the instrument and remove the line cord before removing any covers or panels. Trouble shooting or repair procedures should only be performed by service personnel who are fully aware of the potential hazards.

CAUTION

Many assemblies in the 372XXB contain static-sensitive components. Improper handling of these assemblies may result in damage to the assemblies. *Always* observe the static-sensitive component handling precautions described in Chapter 1, Figure 1-2.

CAUTION

Never operate the 372XXB with connector J3 of the A21A2 Source Control PCB disconnected. Operation

Chapter 5 Troubleshooting

5-1 INTRODUCTION

This chapter provides specific procedures to be followed when troubleshooting 372XXB VNA systems. While performing these procedures, always observe the warnings and cautions on the opposite page.

To use the troubleshooting procedures in this chapter:

- 1. Select the paragraph heading (starting with paragraph 5-4) that best describes the nature of the 372XXB VNA system fault. Refer to the Table of Contents page.
- 2. Perform the procedure contained in the selected paragraph. In general, the steps within each procedure should be followed in the order presented.
- 3. When removing and replacing the various assemblies and components specified by the troubleshooting procedures in this chapter, refer to Chapter 8, Remove and Replace Procedures, as necessary.
- 4. If a step cannot be successfully completed, stop; correct the immediate problem, and then continue on to the next step until all the appropriate steps in the procedure are completed.
- 5. After troubleshooting and correcting a problem, perform the procedures in Chapter 3, (Operational Tests) and Chapter 4 (Performance Verification), as appropriate. This should be done to insure that the system has been fully and correctly restored to proper operation.

The procedures described in this chapter provide a general approach to troubleshooting 372XXB VNA problems. They are particularly useful for problems where the 372XXB is only partially functional. The Internal Diagnostic Menus described in Appendix A are very useful for evaluating 372XXB system performance. They may be used alone, or in conjunction with the procedures in this chapter.

Please ensure you have read and fully understand the servicing concepts for the 372XXB presented in Chapter 1 prior to continuing with this chapter.

5-2 ASSOCIATED INFORMATION

While using the troubleshooting procedures in this chapter, refer also the the following information:

		□ App agne	endix A, Diagnostics Menus, fully describes the 372XXB Di- ostics menu tree, including the SERVICE LOG menu.
		□ App 3722	endix B, Error Codes and Messages, for details on each of the XXB hardware related error messages.
		□ Cha the	pter 6, System Description, for a brief technical description of 372XXB VNA system operation.
5-3	RECOMMENDED TEST EQUIPMENT	The recon sented in	nmended test equipment for the troubleshooting procedures pre- this chapter is listed in Chapter 1, Table 1-1 (page 1-10).
5-4	SYSTEM DOES NOT POWER-UP	If the 372 and the P below.	XXB does not power-up when connected to a source of AC power ower key is pressed, perform the power supply checks described
			WARNING
		H w a p b t	lazardous voltages are present inside the instrument when ac line power is connected. Turn off the instrument and remove the line cord before removing any covers or anels. Trouble shooting or repair procedures should only e performed by service personnel who are fully aware of the potential hazards.
	Line Source and Interface Checks	Check as f	ollows:
		Step 1.	Verify that the AC power source is providing stable power at the correct line voltage.
			NOTE
			The 372XXB is designed to automatically sense and operate with AC power line voltages in the range of 85 - 240 VAC, with a frequency of 48 - 63 Hz (540 VA maximum).
		Step 2.	Verify that the power input cord is in good condition.
		Step 3.	ensure that the system power line fuse is installed, that it is not open, and that it is the correct value (8 A, Slow Blow).
	Power Supply Voltages Check	Verify tha	at the 372XXB power supply voltages are correct as follows:
		Step 1.	Press the 372XXB Power key off , and and disconnect the power input cord from the 372XXB. ensure all external connections to the system front and rear panel are also disconnected.

- Step 2. Remove bottom panel, and lay the system down on its left (monitor) side. Refer to Chapter 8, Remove and Replace Procedures.
- Step 3. Reconnect the power line input cord to the system and Press the 372XXB Power key **on**.
- Step 4. Using a DMM or an oscilloscope, measure the DC power supply voltages listed in Table 5-1. Connect the DMM/oscilloscope to the top of the cable connectors at J13 and J4 on the Motherboard (A17). Refer to Figure 5-1 and Table 5-1.
- Step 5. Connect the common lead of the oscilloscope to J13, pin 8. Measure the Power Supply Sync signal (PS_SYNC) on J13, pin 14:

Connect To:		DC Supply Voltage		AC Ripple and	
Conn	Com (Pin)	Meas (Pin)			Noise
J13	8	16	0 Vdc		50 mVpp
J13	8	1	+4.8 Vdc	+1% / -0%	50 mVpp
J4	4	1	+9 Vdc	+5% / -0%	100 mVpp
J4	4	6	+18 Vdc	+10% / –0%	100 mVpp
J4	4	10	-18 Vdc	+10% / -0%	100 mVpp
J4	4	12	+27 Vdc	+5% / –0%	100 mVpp
J4	4	14	-27 Vdc	+5% /0%	100 mVpp

Table 5-1. 372XXB DC Power Supply Voltage Checks

Figure 5-1. Location of Connectors for Power Supply Voltage Checks

	Specificat	tion: 2-4 vpp Sine Wave at 109.89 KHz
		NOTE The power supply module will power-up without the PS_SYNC signal being present. However, the lack of this signal will introduce signal purity problems when the system is performing measurements.
Power Supply Module Check	If any of the operating the proceed	he DC voltage tests fail, verify that the power supply module is properly with minimal impact from the system as described in lures below.
	If cı sı	<i>NOTE</i> a power supply voltage is low, it may be due to excessive urrent draw from the system and not a fault in the power upply.
	Steps 1 th supplies:	arough 4 verify the operation of the + 9, \pm 18, and \pm 27 Vdc
	Step 1.	Press the 372XXB Power key off , and and disconnect the power input cord.
	Step 2.	Disconnect the power supply module from the A17 Mother- board at J4.
	Step 3.	Reconnect the power line input cord to the system and press the 372XXB Power key on .
	Step 4.	Using a DMM and/or an oscilloscope, measure the power supply voltages at the power supply connector pins that correspond to the Motherboard pins for the + 9, \pm 18, and \pm 27 Vdc supplies. Refer to Table 5-1 and Figure 5-1 (previous page).
	Steps 5 th quires at ital PCBs stalled in	rough 8 check the +5 volt supply. This power supply re- least a 10% load to turn on. Therefore, at least one of the dig- A9, A13, or A14 (which use the 5 volt supply) must be in- the system during this procedure.
	Step 5.	Press the 372XXB Power key off , and reconnect the power supply module to the Motherboard at J4.
	Step 6.	Unplug digital PCB's A13 and A14.
	Step 7.	Press the 372XXB Power key on .
	Step 8.	Using a DMM and/or an oscilloscope, measure the +5 volt power supply at connector J13 on the Motherboard. Refer to Figure 5-1 and Table 5-1, (page 505).

		Step 9.Press the 372XXB Power key off, and and reinstall the A13 and A14 PCB's removed in Step 6.
		If any of the DC voltage tests fail in steps 1 through 8 above, replace the power supply module.
		If any of the DC voltage tests fail with the power supply module con- nected to the 372XXB Motherboard — but pass with it disconnected — then the most probable cause of the failure is that one of the 372XXB assemblies is demanding an excessive amount of current. To locate the failed assembly:
		1. Press the 372XXB Power key off , and unplug a single assembly.
		2. Press the 372XXB Power key on , and note if the failed power supply functions normally.
		3. Repeat Steps 1 and 2 until an assembly is found that clears the power supply failure. The removed assembly is suspect and should be replaced.
5-5	SYSTEM DOES NOT BOOT-UP	If the 372XXB does not boot-up when it is powered-up, perform the checks described below.
	Boot-up Process Sequence	The boot-up process is controlled by the firmware located on the A9 PCB assembly (processor PROM) The boot-up activities include:
		Testing and initializing the A9 Main Processor PCB
		Testing communication between the A9 PCB and the digital PCB assemblies (A13, A14, A15, A16). The following messages will be displayed at this juncture:
		Initializing front panel knob (A14/A20)
		■ Initializing GPIB (A13/A18)
		Initializing external keyboard (A13)
		Initializing external trigger (A13/A5)
		Initializing front panel (A14/A20)
		Loading of system software from disk into memory
		Starting operation of the system software.
		System is booting—message is displayed.
		At this point, the system software continues the boot-up process by performing the following activities:
		Issues command to A15 PCB to change display from TEXT mode to GRAPHIC mode and display ANRITSU logo.

	□ Per (A1 this	forms basic communication tests between the digital system 3, etc.) and the analog subsystem (A1-A8, A21A1, A21A2); s is part of a minimal self test.
	🗆 Cor	nducts an IF Calibration
	□ Res the	ets and loads the front panel state that was in effect prior to last power down
	🗆 Sta	rts the measurement process
	T t I	NOTE The system software fully controls the 372XXB VNA sys- em after boot-up (with operator intervention and guid- ance). The system software is only loaded once upon initial power up.
Troubleshooting Boot-up Problems	To start t following	he troubleshooting of boot-up related problems, perform the preliminary checks:
	1. Not boot	e any error messages displayed on the CRT display during the -up process.
	2. Obs cess not	erve the front panel and the display during the boot-up pro- for information as to which part of the process failed or did execute.
	3. Veri per pow	ify that the system power supplies are working properly as paragraph 5-4, above. Note particularly the operation of er supplies immediately after power-up.
	4. Try 1 ar	to boot the instrument from the floppy disk and repeat steps ad 2 above.
	Upon cor lowing p	npletion of the preliminary checks (above), perform the fol- rocedures, as appropriate.
Hard Disk Problem 1	If a hard the syste	disk problem is indicated during bootup from a floppy disk, but m can bootup correctly from the hard disk:
	Step 1.	Boot up from the hard disk, then format the Hard Disk us- ing the procedure below.
		<u>CAUTION</u> Formatting the hard disk will erase all files on the hard disk. Before starting the disk formatting pro- cess, copy any files you wish to save to a floppy disk.

Step 2. Press the Utility Menu key (System State key group) to dis-

play the **UTILITY FUNCTIONS OPTIONS** menu. From menu, select **GENERAL DISK UTILITIES** (see below).

Step 3. If **FLOPPY DISK UTILITIES** menu appears, select **HARD DISK UTILITIES**.

Step 4. From HARD DISK UTILITIES menu, select FORMAT HARD DISK.

- Step 5. After formatting is complete, reload System Software from the master floppy diskettes. Retry boot-up. If fail, contact ANRITSU Customer Service Center.
- *Hard Disk Problem 2* If system does not bootup from hard disk and floppy disk:
 - Step 1. When the five initializing messages are displayed after power on, press any key within 2 seconds.
 - Step 2. Follow the instruction on the display to format the hard drive. After formatting is complete, reinstall system software from the master floppy diskettes. Retry boot-up.
 - Step 3. If fails, replace the A16 Hard Disk PCB; reinstall system software from the master floppy diskettes.
 - Step 4. Retry boot-up. If fail, contact ANRITSU Customer Service Center.

Floppy Disk Problems If a floppy disk problem is indicated during bootup from floppy disk but the system is able to bootup from the hard disk:

- Step 1. Ensure the floppy disk media is in good condition
- Step 2. Verify disk drive connection at Motherboard connector J2.
- Step 3. Retry boot-up. If fail, replace the A13 I/O#1 PCB.
- Step 4. Retry boot-up. If fail, replace the Floppy Disk Drive.

Screen Display If the 372XXB system appears to have no screen display, perform the preliminary check below and then perform checks 1 - 3, as appropriate:

Preliminary Check - Press the 372XXB Power key **off** and then **on** several times. Each time power is reapplied, pause and wait for the 372XXB software system to boot-up. During boot-up, observe the top left hand portion of the CRT display.

NOTE

- □ An alternative method to reset and re-boot the software system is to press the red button on the A9 Main Processor PCB. Observe the messages displayed on the screen during the boot-up process. Verify that the following messages are present :
 - Initializing front panel knob (A14/A20)....
 - Initializing GPIB (A13/A18)....
 - Initializing external keyboard (A13)....
 - Initializing external trigger (A13/A5)....
- *Check 1:* If during boot-up the 372XXB does not attempt to display any messages at all, proceed as follows:
 - Step 1. Replace the A15 Graphics Processor PCB.
 - Step 2. Retry boot-up. If fail, replace the Internal VGA Monitor.
 - Step 3. Retry boot-up. If fail, replace the A9, Main Processor PCB.
 - Step 4. Retry boot-up. If fail, contact ANRITSU Customer Service Center.
- *Check 2:* If the system halts before it completes all five digital sections, process as follows:
 - Step 1. Replace the PCB indicated on the last displayed message. Example: If the system halt at the "Initializing front panel knob (A14/A20)....," replace the A14 and A20 PCBs.
 - Step 2. Retry to boot the system. If it still fails, contact ANRITSU Customer Service.
- **5-6** SYSTEM PRODUCES ERROR CODE If the 372XXB detects a problem during normal operation, an error message consisting of an error code followed by a brief error message will be displayed on the screen. The error code will also be written to the service log along with some of the operating data gathered from the system at the time of failure.

System error codes in the range 0100 - 3999 identify the suspected failed subassembly in the two most-significant digits of the error code. For example: error codes 0200 - 0299 are related to the A2, LO2 PCB

assembly. This error code assignment scheme allows for quick identification of suspect assemblies.

NOTE

Refer to Appendix B, Error Codes/Messages, for a list of the error codes/messages for 372XXB VNA systems.

There are cases when a fault on one assembly will cause a different assembly to be identified as faulty (per the error code designated). This happens when a failure occurs on an assembly that provides a stimulus or a calibration signal to other assemblies in the system. Example: the A7 LO3 PCB provides the IF Calibration signal to the A3, A4, and A6 PCB's. If the IF Cal signal is faulty, error codes will be reported for the A3, A4, A6, and A7 PCB's.

NOTE

An aide to troubleshooting system failures using error codes is a good understanding of system and subassembly operation. Refer to the descriptions of system and subassembly operation and block diagrams located in Chapter 7, System Description.

Self Test Error Codes Error codes 0100 - 3999, with few exceptions, are produced as a result of a failure when the system self test is run. These error codes will **not** be displayed on the CRT screen. Only the overall result of the self test (PASS/FAIL) will be displayed at the conclusion of the self test. However, any error codes due to the self test will be written to the service log as the self test is executed.

NOTE

The exceptions are error codes with 00 in the two least-significant digits, for example: 0500 A/D CONVER-SION FAIL. These errors are produced at run time if a problem is encountered when the system is actively making measurements.

Phase Lock ErrorThe Phase Lock error codes (6000 - 6999) will have an alphabetical
suffix (code) following the message. For example: 6079 PHS LCK FAIL
ABCDG. This code consists of one or more letters from A - G that rep-
resent the sub assembly that was not locked and/or the nature of the
failure. The phase lock failure mode suffixes are listed in Table 5-2.

Note that most phase lock error codes will normally consist of a letter identifying the unlocked assembly and the **D** and/or **DE** letters that indicate the Source Module is also unlocked. This is normal since all components in the phase lock loop must be correctly locked in order for the Source Module to achieve lock. Refer to Figure 5-2 for a flowchart that troubleshoots the >40 GHz models (37297B).

SYSTEM PRODUCES ERROR CODE

Failure Suffix	Failed Assembly/ Failure Mode	Failure Suffix	Failed Assembly/ Failure Mode
А	10 MHz not present	E	IF lock signal level too low
В	L01 unlocked	F	Ext synthesizer unlocked
С	L02 unlocked	G	L03 unlocked
D	Source unlocked	none	Unknown

Table 5-2. Phase Lock Error Message Failure Suffixes

Example 1: Any of the following error messages indicate that the LO1 PCB assembly was not able to lock:

6002 PHS LCK FAIL B 6010 PHS LCK FAIL BD 6026 PHS LCK FAIL BDE

Also note that if the 10 MHz Reference fails, depending on the failure, the system will not be able to lock any of the phase lock loop components: A1, A2, A7, A8, or Source Module.

Example 2: Either of the following error messages indicate a 10 MHz Reference problem:

6001 PHS LCK A 6015 PHS LCK ABCDG

Service Log Snap Shot Data Error codes will be written to the service log along with some data representing a "Snap Shot" of system conditions at the time of failure. Usually, the data included in the snap shot helps to provide faster diagnosis of the error condition. The common snap shot data items that will be useful inassembly level troubleshooting and fault diagnosis efforts are listed in Table 5-3.

NOTE

Some of the data included in the snap shot is useful only for factory troubleshooting activities.

TROUBLESHOOTING

SYSTEM PRODUCES ERROR CODE

ltem	Description	
SWP	Sweep direction: F = forward (S11, S21), R = reverse (S22, S12)	
PWR	System source power setting	
SYS	System frequency setting	
A	The calibration results for the Test A Channel PCB (A3): This is a series of 16 values divided into groups of four. Each group should have values that are approximately $\frac{1}{4}$ that of those in the previous group.	
	The first group data values should be approximately: 1.00 0.00 0.00 1.00. The values of the next group should be $\frac{1}{4}$ that of those values i.e., 0.25 0.00 0.00 0.25. The same applies for the values in the remaining two groups.	
В	The calibration results for the Test B Channel PCB (A6). See de- scription for "A" above.	
R	The calibration results for the Reference A (or B) Channel PCB (A4). See description for "A" above.	
<ovl></ovl>	Indicates the value was too far out of range to be measurable.	
PHSLCK	Source Locking: L=Source Lock Mode, T=Tracking Mode, S=Set On Mode	

 Table 5-3.
 Service Log Snap Shot Data Items (1 of 2)

DE LOCK FAILURE

Figure 5-2. Error Code DE Lock Failure Troubleshooting (37397A) (1 of 3)

TROUBLESHOOTING

Figure 5-2. Error Code DE Lock Failure Troubleshooting (37397A) (2 of 3)

DE LOCK FAILURE

Figure 5-2. Error Code DE Lock Failure Troubleshooting (37397A) (3 of 3)

5-7 SOURCE/TEST SET/RECEIVER Because of the 372XXB phase-lock loop structure, it is not easy to distinguish between failures that occur in the Source Module, the Test Set Module and the Receiver Module. In order to troubleshoot failures occurring in this group of modules, it is essential to be familiar with how each module functions and how it interacts with the other modules. Refer to Chapter 7, System description, for a functional description of each module.

For Model 37297B, refer to Figure 5-3 and Figure 5-4 (rear of section) for aid in troubleshooting Test and Source Lock signal paths. Refer also to Table 5-6 (rear of section) for a list of typical reference signal values, and to Tables 5-7 and -8 for Transfer and DPDT Switch Voltages.

Signal Source Phase Lock Loop Assemblies

The 372XXB assemblies that contain circuits that are part of the signal source phase-lock loop (Source Lock function) are listed in Table 5-4.

Assemblies	Location
A21A1 Source YIG/Bias PCB	Source Module
A21A2 Source Control	Source Module
YIG Oscillator	Source Module
Switched Filter	Source Module
Down Converter	Source Module
Switched Doubler Module SDM*	Test Set Module
Transfer Switch	Test Set Module
Buffer Amplifier	Receiver Module
A1 LO1 PCB	Receiver Module
A2 LO2 PCB	Receiver Module
A4 Reference IF PCB	IF Section
A8 Source Lock/Signal Separation Control PCB	Analog Subsystem
A9 Main Processor PCB	Digital Subsystem
* Model 37269B only	

Table 5-4. Phase Lock Loop Assemblies (2 of 2)

Failures occurring in the Source Module, Test Set Module and Receiver Module will generally cause the system to produce "Phase Lock Fail" error codes. Included with the Phase Lock Fail error codes are alphabetical suffixes that indicate the probable malfunctioned sub-assembly.

Example: 6008 PHS LCK FAIL D

The letter "D" in the error code above indicates that the failure is possibly in the Source Module. (Refer to Table 5-3.)

Signal Source/TestFailures occurring in the Signal Source Module and Test Set Module will
also produce the error codes listed in Table 5-5.

Error Codes	Possible Failed Assemblies		
5110 RF PWR UNLEVELED	All components in Source Module and Test Set Module		
5210 REF A CHAN RF OVERLOAD	Transfer Switch		
5220 REF B CHAN RF OVERLOAD	Transfer Switch		
5230 TA CHAN RF OVERLOAD	Transfer Switch or A21A2 PCB		
5240 TB CHAN RF OVERLOAD	Transfer Switch or A21A2 PCB		

Table 5-5. Signal Source/Test Set Module Error Codes

Codes

NOTE

The 372XXB has extensive built-in troubleshooting tools that are useful for troubleshooting the failures listed in Table 5-5. These and other troubleshooting tools are accessed from the Option Menu key, which is part of the enhancement keygroup. (From the select OPTIONS menu select **DIAGNOSTICS**, then select **TROUBLE-SHOOTING**). Refer to Appendix A.

Troubleshooting tools that are available from the TROUBLE-SHOOTING menu that are useful for locating faults occurring in the Source Module, Test Set Module and Receiver Module are:

NOTE

The troubleshooting tools listed below are used to test the 372XXB to factory set limits when the ANRITSU 372XXB Test Software (2300-178) is run.

When run from the TROUBLESHOOTING menu, not all tests will display limit lines (as is the case when the 372XXB Test Software 2300-178 is used).

NON-RATIO PARAMETERS

This function displays the output of each of the individual test set channels. It is especially useful for verifying the performance of the Buffer Amplifier and Power Amplifier.
TROUBLESHOOTING

SOURCE/TEST SET/RECEIVER

NOTE

A through-line cable connecting Port 1 and Port 2 is required for this check.

By examining these displays in conjunction with other failure symptoms, the failed assembly can be located.

Example: Suppose the Non-Ratio Parameter screen display shows power holes above 270 MHz on all traces and in both sweep directions. A possible cause for this condition is a failure of the Power Amplifier assembly at certain frequencies. (Refer to Analog Subsystem Block Diagram in Figure 7-2 on page 7-6).

L01

This function allows user to verify whether the A1 LO1 PCB is operating properly.

LO2

This function allows the user to verify whether the A2 LO2 PCB is operating properly.

SOURCE

This function allows the user to verify whether the Source Module is operating properly.

Isolation Procedures The procedures in the following paragraphs will help you isolate the fault to the major assembly.

Check #1 Proceed as follows:

Step 1. Press Option Menu key and select the DIAGNOSTICS menu option.

OPTIONS
TRIGGERS REAR PANEL OUTPUT DIAGNOSTICS MULTIPLE SOURCE CONTROL

Step 2. Select the READ SERVICE LOG menu option to display the error entry associated with the system failure. Observe the snap shot data included as part of the error entry and note

the sweep direction indication for each error code. (Refer to Table 5-3.)

Step 3. Determine whether the failure occurs during forward measurements (S11, S21) and/or reverse measurements (S22, S12):

> If the problem occurs in both directions at all frequencies, the <u>fault could</u> be in the Receiver Module, Signal Source Module, or Test Set Module.

If the problem occurs in both directions at only certain frequencies, the fault could be in the Signal Source Module.

If the problem occurs in only one direction, the fault could be in the TEST SET MODULE.

Step 4. Run the 37XXX Test Software (2300-178) program to verify operation of the Buffer Amplifier, A1 LO1 PCB, A2 LO2 PCB, and Source control PCB.

Use the information obtained in steps 1 – 4 above to determine whether the failure occurs in the Source Module, Test Module or Receiver Module. Replace the suspected failed assembly, and perform any required adjustment(s). Then retest. If the 372XXB still fails, contact ANRITSU Customer Service Center for further assistance.

NOTE

To obtain technical service support from your nearest ANRITSU Customer Service Center, refer to Paragraph 1-8, Service Support Information.

- *Check #2* If you have determined that the failure occurs in both sweep directions, only at certain frequencies, and that Error Code 5110 is recorded in the Service Log, use the following procedures to determine which assembly may have failed:
 - Step 1. Set the 372XXB Start and Stop frequencies for the following bands:

Band	Start	Stop
1	22.5*/40 MHz	2.0 GHz
2	2.0 GHz	Upper band-edge frequency for model. (20 GHz for 37269B)

TROUBLESHOOTING

PERIPHERALS/ INTERFACE TEST

		Step 2.	If the problem occurs in Band 1, replace the Down Con- verter assembly and repeat test.
			If it fails, contact ANRITSU Customer Service Center.
		Step 3.	If the problem only occurs in Band 3, replace the Switched Doubler Module assembly and repeat test.
			If it fails, replace Switched filter and repeat test.
			If it fails, contact ANRITSU Customer Service Center.
		Step 4.	If the problem only occurs in Band 2, replace Switched Fil- ter assembly and repeat test.
			If it fails, contact ANRITSU Customer Service Center.
			<i>NOTE</i> After replacing a component, perform a Frequency Calibration and a RF power/ALC Calibration. Refer to Chapter 6, Adjustments.
	Check #3	If you hav <i>all freque</i> failed com	ve determined that failure occurs in both sweep directions, <i>at ncies</i> and Error Code 5110 is recorded in the Service Log, the ponent could be any of the following assemblies:
		1. Tran	sfer Switch
		2. Swite	ched Doubler Module
		3. YIG	Oscillator
		4. A21A	A1 YIG Bias PCB
		5. A21A	A2 Source Control PCB
		Replace the ment recarcontact year	he components listed above in sequence. After each replace- librate unit (see note above) and retest. If 372XXB still fails, our nearest ANRITSU Customer Service Center.
<i>5-8</i>	PERIPHERALS/ INTERFACE TEST	The follow ing 372XX subheadin	ring paragraphs contain procedures to be used for troubleshoot- B peripheral or interface test failures. Select the paragraph og that corresponds to the test that failed.
	CRT Display Test Failures:	If the CR	Γ Display Test failed, troubleshoot as follows:
		Step 1.	Replace the CRT Monitor Assembly.

MEASUREMENTS IN QUESTION

		Step 2.	Perform the CRT Monitor Test again; if fail, replace the A15, Graphics Processor PCB.
		Step 3.	Perform the CRT Monitor Test again; if fail, contact ANRITSU Customer Service Center.
	Front Panel Test Failures:	If the Fro	nt Panel Test failed, troubleshoot as follows:
		Step 1.	Replace the Front Panel Assembly.
		Step 2.	Perform the Front Panel Test again; if fail, replace the A14, I/O#1 PCB.
		Step 3.	Perform the Front Panel Test again; if fail, contact ANRITSU Customer Service Center.
	External Keyboard Interface Test Failures:	If the Ext	ernal Keyboard Interface Test failed, troubleshoot as follows:
		Step 1.	Replace the A18, Rear Panel PCB.
		Step 2.	Perform the External Keyboard Interface Test again; if fail, replace the A13, I/O#1 PCB.
		Step 3.	Perform the External Keyboard Interface Test again; if fail, contact ANRITSU Customer Service Center.
	Printer Interface Test Failures:	If the Prir	nter Interface Test failed, troubleshoot as follows:
		Step 1.	Replace the A18, Rear Panel PCB.
		Step 2.	Perform the Printer Interface Test again; if fail, replace the A13, I/O#1 PCB.
		Step 3.	Perform the Printer Interface Test again; if fail, contact ANRITSU Customer Service Center.
	GPIB Interface Test Failures:	If the GPI	B Interface Test failed, troubleshoot as follows:
		Step 1.	Replace the A18, Rear Panel PCB.
		Step 2.	Perform the GPIB Interface Test again; if fail, replace the A13, I/O#1 PCB.
		Step 3.	Perform the GPIB Interface Test again; if fail, contact ANRITSU Customer Service Center.
5- 9	MEASUREMENTS IN QUESTION	If the 3722 provide gu ity probler	XXB measurement quality is suspect, the following paragraphs idelines and hints for determining possible measurement qual- ns.

TROUBLESHOOTING

MEASUREMENTS IN QUESTION

The quality of 372XXB VNA measurements is determined by the following test conditions and variables:

- **Condition of the 372XXB.**
- Quality and condition of the interface connections and connectors.
- Quality and condition of the calibration components, through-lines, adapters and fixtures.
- □ Surrounding environmental conditions at the time of the measurement.
- □ Selection and performance of the calibration for the DUT being measured.

Measurement Conditions Check List

When determining possible measurement problems, check the following items:

- 1. Check the DUT and the calibration conditions:
 - □ Ensure the Calibration Components Coefficients data has been installed into the system from the Calibration Kit in use.
 - □ Ensure the proper calibration was done for the device being measured:
 - For high insertion loss device measurements the calibration should include isolation, high number of averages, and lower IF Bandwidth settings during the calibration.
 - For high return loss device measurements the calibration should also include a sliding load calibration.
 - **Check DUT mating connector(s) condition and pin depth.**
 - □ Measure an alternate known good DUT, if possible.
 - □ Check if the environment is stable enough for the accuracy required for the DUT measurement.
 - The system should not be subjected to variations in temperature.
 - The system should not be placed in direct sun light or next to a changing cooling source, such as a fan or air conditioning unit.
- 2. Check the calibration using known good components from the calibration kit. If measurements of these devices do not produce good results:
 - □ Check through-cable stability including condition and pin depth. Replace with a known good cable, if necessary.
 - □ Check condition and pin depth of calibration kit components. Replace with known good components, if necessary.

□ Check condition and pin depth of test port connectors. Replace with known good ones if necessary.

NOTE

The procedures for performing pin depth measurements for the connectors used on ANRITSU products are contained in Appendix C, Connector Maintenance Check Procedures.

- 3. Check the system performance as follows:
 - Perform the Signal Path Tests that are part of the Operational Tests. Refer to Chapter 3, Operational Tests.
 - Check Match, Directivity, and Dynamic Range as described in Chapter 4, Performance Verification.
 - □ Complete the remaining checks described in Chapter 4 (Performance Verification).

TROUBLESHOOTING

MEASUREMENTS IN QUESTION

Frequency	SQM In	SDM Out	MUX J4	MUX J1	Buffer Amp In
20 GHz	NA	+18	+6	NA	-26
37 GHz	NA	+20	+4	NA	-28
40 GHz	+19	NA	NA	+14	-28
50 GHz	+18	NA	NA	+14	-23
65 GHz	+16	NA	NA	+10	-26

Table 5-6. Typical Reference Signal Values in dBm

 Table 5-7.
 Typical Transfer Switch Voltages (CW, Single Channel Display)

Wire Color	Below	38 GHz	Above 38 GHz	
	S21	S12	S21	S12
Brown	+2.0	-3.3	+2.0	+2.0
Black	-6.7	+1.6	+1.6	+1.6
White	+1.6	-6.8	+1.6	+1.6
Grey	-3.3	+2.0	+2.0	+2.0

Figure 5-8. Typical SPDT Switch Voltages (CW, Single Channel Display)

Wire Color	Forward	Reverse
Brown	+1.2	-3.7
Grey	-3.7	+1.2

37397A TEST SIGNAL PATH DIAGRAM

another matched set, part number ND53249.

** Indicates not present on model 37297B or 37277B

Figure 5-3. 37397A Test Signal Path Diagram

TROUBLESHOOTING

372XXB MM

TROUBLESHOOTING

NOTE: Sampler/Buffer amplifiers are individually matched to Power Amplifiers. If either fails, both should be replaced with another matched set, part number ND53249.

** Indicates not present on model 37297B or 37277B

37397A SOURCE LOCK SIGNAL PATH DIAGRAM

5-27/5-28

Chapter 6 Adjustments

Contents

6-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
6-2	LO1 CALIBRATION6-3Calibration Procedure6-3Post Calibration Actions6-3
6-3	LO 2 CALIBRATION
6-4	FREQUENCY CALIBRATION6-5Calibration Procedure6-6Post Calibration Actions6-7
6-5	RF POWER/ALC CALIBRATION····································

Chapter 6 Adjustments

6-1	INTRODUCTION	This chapter contains five procedures that are used to restore the tion of the 372XXB signal source and the related source lock system semblies. Use these procedures after various signal source related blies have been replaced due to troubleshooting or repair activity		
		Refer to j if certain	paragraph 6-7 and 6-8 for recalibrations, which are necessary subassemblies are replaced.	
		Please in cepts for this chap	sure you have read and fully understand the servicing con- the 372XXB presented in Chapter 1 prior to continuing with ter.	
6-2 LO1 CALIBRATION		This procedure uses the 372XXB internal diagnostics and calibration menus to adjust the A1 1st LO PCB assembly. Perform this calibation procedure if:		
		🗆 The	A1 PCB is replaced.	
		□ BBI Loc disl	RAM chip on A9 Processor PCB is replaced and the Source k Threshold Calibration data was not previously saved on k (that is, data is not available for recall from a floppy disk).	
	Calibration Procedure	Perform	the following steps:	
		Equipm	ent Required	
		None		
		Ą	<i>NOTE</i> Illow the 372XXB to warm-up at least 30 minutes prior to erforming calibration.	
		Procedu	<i>re</i>	
		Step 1.	Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.	
		Step 2.	Select DIAGNOSTICS from menu. Then select in se- quence: H/W CALIBRATIONS then LO1 CALIBRA - TION.	

Step 3. Follow the directions displayed on the 372XXB CRT screen, until calibration is completed.

LO 2 CALIBRATION

Post Calibration Action	After thetions, as	After the calibration process is completed, perform the following ac- tions, as appropriate:			
	If calibi	ration passes:			
	Save the	Save the calibration data to (hard) disk, as follows:			
	Step 1.	Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.			
	Step 2.	Select DIAGNOSTICS from menu.Then select in se- quence: H/W CALIBRATIONS DISK OPERATIONS SAVE TO HARD DISK HW_CAL.LO1.			
		NOTE Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with cali- bration type, date, and system model and se- rial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.			
	If calibi	ration fails:			
	Step 3.	Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.			
6-3 lo 2 Calibration	This proc menus to procedur	cedure uses the 372XXB internal diagnostics and calibration adjust the A2 1st LO PCB assembly. Perform this calibation re if:			
	🗅 The	e A2 PCB is replaced.			
	BB Loc disl	RAM chip on A9 Processor PCB is replaced and the Source k Threshold Calibration data was not previously saved on k (that is, data is not available for recall from a floppy disk).			
Calibration Procedur	n Perform e	the following steps:			
	Equipm	ent Required			
	None				
	A	<i>NOTE</i> Allow the 372XXB to warm-up at least 30 minutes prior to performing calibration.			

Procedure

- Step 1. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 2. Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** then **LO2 CALIBRA-TION.**
- Step 3. Follow the directions displayed on the 372XXB CRT screen, until calibration is completed.

Post CalibrationAfter the calibration process is completed, perform the following ac-
tions, as appropriate:

If calibration passes:

Save the calibration data to (hard) disk, as follows:

Step 1. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.

Step 2. Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** | **DISK OPERATIONS** | **SAVE TO HARD DISK** | **HW_CAL.LO2**.

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type, date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

If calibration fails:

Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.

This procedure uses the internal 372XXB diagnostics and calibration menus, in conjunction with a suitable frequency counter, to adjust the signal source frequencies throughout the range of the 372XXB model being calibrated. Perform this calibration procedure if:

- □ The Source FM/Lock Linearity test in Chapter 3, Operational Test, fails.
- □ Other testing or troubleshooting reveals a possible problem with the signal source frequency accuracy or phase lock loop.
- □ Any of the following assemblies are replaced:

6-4 FREQUENCY CALIBRATION

- A21A1 Source YIG/Bias
- A21A2 Source Controller
- Down Converter
- YIG Oscillator
- Switched Filter
- Buffer Amplifier
- BBRAM chip on the A9 Processor PCB is replaced and the Source Calibration Data was not previously saved on disk (thus data could not be recalled from disk).

Calibration Perform the following steps:

Procedure

Equipment Required

Refer to Table 1-1, located on page 1-10, for further information about the following equipment:

EIP Model 578B Frequency Counter, or equivalent.

RF/Microwave Cable

GPIB cable, ANRITSU 2100-2, or equivalent

NOTE

Allow the 372XXB and Frequency Counter to warm-up at least 30 minutes prior to performing calibration.

Procedure

Step 1. Set up test equipment as shown in Figure 6-1.

Figure 6-1. Test Equipment Setup for Frequency Calibration

- Step 2. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 3. Select **DIAGNOSTICS** from menu; then select in sequence: **H/W CALIBRATION**, and then **SOURCE FREQUENCY CALIBRATION** (below).

- Step 4. Follow the directions displayed on the screen to set-up and connect the frequency counter to the 372XXB. Refer also to Figure 6.1 (next page). Select START SOURCE FREQ CALIBRATION from menu (above).
- Step 5. Follow the directions displayed on the 372XXB CRT screen, until calibration is completed.

Post Calibration
ActionsAfter the calibration process is completed, perform the following ac-
tions, as appropriate:

If calibration passes:

Save the calibration data to (hard) disk, as follows:

- Step 1. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 2. Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** | **DISK OPERATIONS** | **SAVE TO HARD DISK** | **HW_CAL.FRE.**

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type (FRE), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so

that it will be available for later use, as needed.

Perform the Source FM/Lock Linearity test in Chapter 3, Operational Tests. If the test fails, proceed to Chapter 5, Troubleshooting.

If calibration fails:

- □ Verify the GPIB cable is connected to the Dedicated GPIB (bottom) connector on the 372XXB rear panel.
- □ Verify that the frequency counter is functioning correctly, the cable is in good condition, and all connections are secure.
- □ Note which calibration step failed from the screen messages.
- □ Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.

This procedure uses the 372XXB internal diagnostics and calibration menus, in conjunction with a suitable power meter, to adjust the output power level of the signal source throughout the range of the 372XXB model being calibrated. Perform this calibration procedure if:

- **□** The Source Power/ALC test in Chapter 3, Operating Test, fails.
- □ Other testing or troubleshooting reveals a possible problem with RF Power accuracy or the ALC loop.
- □ Any of the following assemblies are replaced:
 - A21A1 Source YIG/Bias
 - A21A2 Source Controller
 - Down Converter
 - YIG Oscillator
 - Switched Filter
 - Transfer Switch
 - SDM (37269B)
 - Coupler (37225B and above)
 - Bridge (37217B and below)
 - Buffer Amplifier
- BBRAM chip on the A9 Processor PCB is replaced and the Source Calibration Data was not previously saved on disk (thus data could not be recalled from disk).

6-5 RF POWER/ALC CALIBRATION

Calibration Perform the following steps: *Procedure*

Equipment Required

Refer to Chapter 1, Table 1-1, page 1-9, for further information about the following equipment:

HP 437B Power Meter with HP 8487A Power Sensor

or:

ANRITSU ML24XXA with Version 2.02 or later, with ANRITSU Power Sensors MA2474A and SC6230 for 65 GHz units.

or:

Gigatronics 8541/8542 with 80304A Power Sensor

GPIB cable, WILTRON 2100-2, or equivalent

NOTE

Allow the 372XXB and power meter to warm-up at least 30 minutes prior to performing calibration.

65 GHz Power Sensor Setup Procedure

The Anritsu SC6230 Power Sensor has an internal frequency calibration factors table. The ML24XX meter settings must be changed so that the table will be used for frequencies above 50 GHz. To configure the meter for the new calibration factors table, proceed as follows:

- Step 1. Press the Sensor key then **Cal Factor** softkey.
- Step 2. Press the **More** softkey.
- Step 3. Press the **Use Table** sofkey. Cursor will start blinking.
- Step 4. Press 1 then the **Enter** softkey.
- Step 5. Press the System key to exit.

Procedure

- Step 6. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 7. Select DIAGNOSTICS from menu; then select in se-

ADJUSTMENTS

RF POWER/ALC CALIBRATION

quence: **H/W CALIBRATIONS**, and then **SOURCE ALC CALIBRATION** (below).

Step 8. Follow the directions displayed on the screen to set-up and connect the power meter to the 372XXB. Refer also to Figure 6-2. Select **START ALC CALIBRATION** from menu.

Figure 6-2. Test Equipment Setup for Power Calibration

Step 9. Follow the directions displayed on the 372XXB CRT screen, until calibration is completed.

Post CalibrationAfter the calibration process is completed, perform the following ac-
tions, as appropriate:

If calibration passes:

Save the calibration data to (hard) disk, as follows:

- Step 1. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 2. Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** | **DISK OPERATIONS** | **SAVE TO HARD DISK | HW_CAL.ALC.**

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type (ALC), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

Perform the RF Power Generation and Control test in Chapter 3, Operational Tests. If the test fails, proceed to Chapter 5, Trouble-shooting.

If calibration fails:

- □ Verify the GPIB cable is connected to the Dedicated GPIB (bottom) connector on the 372XXB rear panel.
- □ Verify that the power meter and sensor are functioning correctly, the cables are in good condition, and all connections are secure.
- □ Verify the correct power sensor data exists in the power meter.
- □ Note the failed step in the calibration procedure from the screen messages.
- □ Repeat calibration. If it still fails then proceed to Chapter 5, Troubleshooting.

LOCKThis procedure is only for the 37297B. It uses the 372XXB internal di-
agnostics and calibration menus to adjust the source lock threshold of
the phase-lock loop. Perform this calibration procedure if:

- **□** The A4 PCB is replaced.
- BBRAM chip on A9 Processor PCB is replaced and the Source Lock Threshold Calibration data was not previously saved on disk (that is, data is not available for recall from a floppy disk).

Calibration Perform the following steps:

Procedure

Equipment Required

Two broadband terminations or one 3670V50-2 cable.

6-6 SOURCE LOCK THRESHOLD

NOTE

Allow the 372XXB to warm-up at least 30 minutes prior to performing calibration, and perform the ALC calibration (paragraph 6-3) before doing this calibration.

Procedure

Step 1.	If recalibrating a 37397A , install broadband terminations
	to both ports or install a throughline between ports.

- Step 2. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 3. Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** then **SOURCE THRESH-OLD CALIBRATION.**
- Step 4. Follow the directions displayed on the 372XXB CRT screen, until calibration is completed.

Post CalibrationAfter the calibration process is completed, perform the following ac-
tions, as appropriate:

If calibration passes:

Save the calibration data to (hard) disk, as follows:

- Step 1. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- Step 2. Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** | **DISK OPERATIONS** | **SAVE TO HARD DISK** | **HW_CAL.SLT.**

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type, date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

If calibration fails:

□ Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.

6-7 A8 ADJUSTMENT This procedure is only for the 37297B. The adjustments are important to the operation of the VNA above 56 GHz. Improperly adjusted A8

Potentiometers may cause lock failures. Perform these adjustments as follows:

- □ The A8 PCB is replaced.
- □ 44733 Buffer Amp is replaced.

Calibration Perform the following steps:

Procedure

Equipment Required

V Throughline (3670V50-2 with FF Adapter)

NOTE

Allow the 372XXB to warm-up at least 30 minutes prior to performing calibration, and perform the ALC calibration (paragraph 6-3) before doing this calibration.

Procedure

Step 1.	Connect a V Throughline (3670V50-2 with FF Adapter) be- tween Ports 1 and 2.
Step 2.	Set the 372XXB to sweep from 50 to 65 GHz.

- Step 3. Set RF power to 0 dB (default value).
- Step 4. Using Diagnostics menu, view Non-Ratio parameters.
- Step 5. View Channel 1 (Ref A) only, and activate Autoscale.
- Step 6. Adjust the "RA" potentiometer on top of A8 for the flattest trace display. A small discontinuity at 56 GHz is normal.
- Step 7. Perform Step 6 for each of the four Non-Ratio channels.

6-8 A21A2 ADJUSTMENT This procedure is only for the 37297B. This adjustment ensures the correct RF power level will be available to drive the source quadrupler modules (SQMs). Perform these adjustments as follows:

- □ D454244 is replaced.
- □ A21A2 PCB is replaced.
- **C21620** YIG Oscillator is replaced.

NOTE

Failure to perform this adjustment may result in intermittent operation.

Calibration Perform the following steps:

Procedure

A21A2 ADJUSTMENT

Refer to Table 1-1, located on page 1-9, for further information about the following equipment:

HP 437B Power Meter with HP 8487A Power Sensor

or:

ANRITSU ML24XXA with Version 2.02 or later, with ANRITSU Power Sensor MA2474A

or:

Gigatronics 8541/8542 with 80304A Power Sensor

GPIB cable, WILTRON 2100-2, or equivalent

NOTE

Allow the 372XXB and power meter to warm-up at least 30 minutes prior to performing calibration.

Procedure

Step 1.	With power off and the new part installed, disconnect the RF cable from J4 of the Switched Filter.
Step 2.	Install Power Sensor (use a 6 or 10 dB pad for protection) to Switched Filter J4.
Step 3.	Turn on the 372XXB and set it to 38 GHz, CW.
Step 4.	Adjust A21A2R238 for maximum power, but not over +26 dBm.
Step 5.	Remove the pad and sensor and reconnect the RF cable to J4.
Step 6.	Perform the procedures in paragraph 6-4 and 6-5 (fre- quency and ALC calibrations).

Chapter 7 System Description

Table of Contents

7-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
7-2	SYSTEM OVERVIEW · · · · · · · · · · · · · · · · · · ·
7-3	ANALOG SUBSYSTEM ASSEMBLIES · · · · · · · · · · · · · · 7-7
	Signal Source Module · · · · · · · · · · · · · · · · · · ·
	Test Set Module 7-8
	Receiver Module · · · · · · · · · · · · · · · · · · ·
	A8, Source Lock/Signal Separation and
	Control PCB
	IF Section · · · · · · · · · · · · · · · · · · ·
	A7 PCB, LO3 · · · · · · · · · · · · · · · · · · ·
	A5 A/D Converter PCB · · · · · · · · · · · · · · · · · · ·
7-4	DIGITAL SUBSYSTEM ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	A9 Main Processor PCB Assembly · · · · · · · · · · · · · · · 7-15
	A13 I/O Interface #1 PCB Assembly · · · · · · · · · · · · · · · · 7-16
	A14 I/O Interface #2 PCB Assembly · · · · · · · · · · · · · · · · · 7-16
	A15 Graphics Processor PCB Assembly · · · · · · · · · · · · · 7-17
	A16 Hard Disk PCB Assembly
	Floppy Disk Drive Assembly · · · · · · · · · · · · · · · · · · ·
	A24 VME Bus Terminator PCB · · · · · · · · · · · · · · · · · · ·
7-5	MAIN CHASSIS ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	A17 System Motherboard Assembly · · · · · · · · · · · · · · · 7-17
	Front Panel Assembly
	Rear Panel Assembly
	A18 Rear Panel Interface PCB.
	Power Supply Module
	Internal VGA Monitor · · · · · · · · · · · · · · · · · · ·
	A7 PCB, 10 MHz Timebase

Chapter 7 System Description

This chapter provides a brief overview of the functional assemblies and major parts that comprise a typical Series 372XXB VNA system. It also briefly describes the operation of each major assembly.

7-2 SYSTEM OVERVIEW Series 372XXB Vector Network Analyzers are ratio measurement systems used to measure complex vector signal characteristics (real/imaginary, magnitude/phase, etc) of devices and systems in the 22.5 MHz to 65 GHz frequency range.

The 372XXB performs these measurements by sourcing a stimulus signal to the Device Under Test (DUT) that is connected to the front panel Port 1 and/or Port2 connectors. (See Figure 7-1 on page 7-5). It simultaneously measures the DUT response, which consists of reflected and/or transmitted (attenuated, or amplified) signals at the connectors of the DUT. The reflected and/or transmitted signal(s) and a sample of the stimulus signal, are down converted and then transformed into their real and imaginary vector components. The resultant vector components are measured and converted into digital information. This digital information is sent to the Main Processor PCB where the desired S-parameter data is normalized and then presented to the user via the front panel color display. The display information is also sent to the rear panel VGA Out connector for use with an external VGA monitor.

The normalized measurement information is also sent to the rear panel Printer Out connector for use with an external printer and/or plotter.

A front panel keypad, a rotary knob, and an IBM compatible keyboard interface provide user interaction with 372XXB Main Processor PCB.

The system is equipped with internal hard disk and floppy disk drives and battery backed internal memories for storage and retrieval of data and front panel setup information.

The 372XXB implements an IEEE 488.2 interface. This GPIB interface allows an externally connected instrument controller to control the 372XXB system in the "Remote-Only" mode. All 372XXB measurement and input/output operations may be controlled remotely in this mode.

7-1 INTRODUCTION

An internal service log stores a record of system failures, data about the failures, and other key system service information. The service log is implemented using internal battery-backed SRAM memory.

SYSTEM DESCRIPTION

Figure 7-1. Overall Block Digram of 372XXB VNA System

372XXB MM

* MODEL 37269A ONLY

7-5

ANALOG SUBSYSTEM BLOCK DIAGRAM

Figure 7-2. Analog Subsystem Block Diagram

SYSTEM DESCRIPTION

372XXB MM

SYSTEM DESCRIPTION

ANALOG SUBSYSTEM ASSEMBLIES

7-3 ANALOG SUBSYSTEM ASSEMBLIES The following parage prise the 372XXB An

The following paragraphs briefly describe the major assemblies that comprise the 372XXB Analog Subsystem. Descriptions of the functions performed by each assembly are also included.

Signal Source Module The Signal Source Module consists of the items listed below; refer to the block diagram of the Analog Subsystem (Figure 7-2) at left.

- 2-20 GHz YIG Oscillator Assembly
- □ A21A1 YIG/Bias Controller PCB
- □ A21A2 Source Control PCB
- Switched Filter Assembly
- Down Converter Assembly

The Signal Source Module is a swept frequency signal generator that produces a phase locked (and leveled) output signal within a range of 22.5 MHz to 20 GHz. All Series 372XXB VNA models employ phase-lock control of the signal source module so that the output frequency is accurate and stable. The output signal is phase locked by the -6 MHz/volt control signal fed back from the A8 Source Lock/Separation Control PCB Assembly (which is described in following paragraphs).

All Series 372XXB VNA models use a single YIG-tuned oscillator to produce fundamental frequency source signals from 2.0 to 20 GHz. All other output frequencies are derived from the fundamental frequencies generated by the YIG-tuned oscillator. The signal source output frequencies for the low end portion of the frequency range (22.5 MHz to 2.0 GHz) are produced by down converting YIG fundamental signals in the range of 6.3225 to 8.3 GHz.

For Model 37269B, the signal source output frequencies for the high end portion of the frequency range (20 to 40 GHz) are produced by the Switched Doubler Module that doubles the YIG fundamental signals in the range of 10 to 20 GHz. The Switched Doubler Module (SDM) is located in the Test Set Module (described below.) The A21A2 Source Control PCB assembly provides all bias and control signals for the SDM.

The YIG-tuned oscillator generates a high-power RF output signal that has low broadband noise and low spurious content. The frequency of the YIG-tuned oscillator is controlled by means of :

- □ The YIG main tuning coil
- □ The YIG FM (fine tuning) coil

The system A9 Main Microprocessor PCB sends the data that represents the desired operating frequency to the A21A2 (Source Control) PCB, which converts the frequency data to analog signals. These signals are then sent to the A21A1 YIG/Bias Controller PCB. This PCB converts the analog signals to YIG main tuning coil current.

The main tuning coil current from A21A1 YIG/Bias Controller PCB coarsely tunes the YIG-tuned Oscillator to within a few megahertz of the final output frequency. The YIG phase-lock loop then fine tunes the YIG-tuned oscillator to the exact output frequency via the FM (fine tuning) coil.

The fundamental frequency source signal is leveled by a PIN Diode attenuator that is part of the Switched Filter Assembly. This attenuator is controlled by the Automatic Leveling Control (ALC) circuits that are located on the A21A2 Source Control PCB. The input to the ALC circuits is the DC feed-back signal from the leveling detectors located in the Test Set Module.

Depending on the frequency of operation, the fundamental signal is passed through one of four low-pass filters located in the Switched Filter Assembly. The cut-off frequencies for these filters are 3.3 GHz, 5.5 GHz, 8.4 GHz, and 13.5 GHz, respectively. The signal is then passed through a 20 GHz high pass filter before being routed either directly to the Test Set Module, or to the Down-Converter Assembly .

The signal is switched to the Down-Converter Assembly only when the 372XXB is operating in the low end portion of its frequency range. The frequency of the output signal from the Down-Converter Assembly is 22.5 MHz to 2 GHz for Models 37211Band 37217B and 40 MHz to 2 GHz for Models 37225B and above. The output signal from the Down-Converter Assembly is routed to the Test Set Module.

Test Set Module

dule The Test Set Module consists of the items listed below; refer to Figure 7-2.

- □ Transfer Switch assembly
- □ Two Couplers (Models 37225B and above) or two Low Frequency Bridges (Models 37217B and below)
- Switched Doubler Module for 20-40 GHz operation (Model 37269B)

In the Test Set Module, the 22.5 MHz – 20 GHz signal from the signal source module is switched (via the Transfer Switch) between the front panel Port 1 and Port 2 connectors. The Transfer Switch is controlled by the A9 Main Processor PCB to set the direction of signal flow for the desired test (Port 1 = Forward; Port 2 = reverse). For operation between 20 GHz and 40 GHz, the stimulus signal is routed to the Switched Doubler Module before being sent to the Transfer Switch.

The stimulus signal is output to the DUT via directional couplers mounted directly to the Port 1 and Port 2 front panel connectors. Note that bridges are used instead of couplers in RF Models 37211B and 37217B.

Each output circuit path from the Transfer Switch contains a splitter. One path from each splitter goes to the associated directional coupler (Port 1/Port 2) and the other path feeds the associated "Reference" input of the Receiver Module (RA/RB), via a level detector. The output generated by the two parallel configured level detectors is a DC signal that corresponds to the output level of the stimulus signal. This signal is the input signal for the ALC circuits located in the signal source module. Only the detector in the currently selected sweep direction actually generates the ALC control signal.

The Test Set simultaneously receives the reflected and transmitted device-under-test (DUT) signals via the Port 1/Port 2 directional couplers. These two test signals, along with a sample of the output RF stimulus (Reference) signal, are sent to the Receiver Module.

The a1 Reference signal is routed out of, and back into, the 372XXB via extension loop located on the rear panel. This allows for injection of user supplied signals in lieu of internal signals.

A7 PCB, 10 MHz Timebase Timebase

The A7 PCB provides the fixed 2.42 MHz Local Oscillator signal and the 80 kHz Calibration signal to the IF PCBS (A3, A4, and A6). These signals are derived from the 10 MHz Reference Timebase.

Units equipped with Option 10 or 10A have a high-stability ovenized timebase mounted inside the rear panel directly above the Power Supply Module. This timebase replaces the standard 10 MHz timebase located on the A7 PCB. The output from this timebase is routed to the A7 PCB for distribution. It is powered by regulated +24 vdc from the A7 PCB.

Receiver Module The Receiver Module consists of the items listed below; refer to Figure 7-2.

- □ Quad Sampler/Buffer Amplifier with integrated SRD (step recovery diode)
- Dever Amplifier
- □ A1, LO1 PCB
- □ A2, LO2 PCB

The Receiver Module is a four channel two stage Sampler/Buffer Amplifier and Down Conversion unit. It simultaneously converts the four 22.5 MHz - 40 GHz signals from the Test Set Module into three 2.5 MHz IF signals that are output to the IF Section.

The first stage of the Receiver Module uses harmonic sampling to down-convert the four 22.5 MHz – 40 GHz output signals from the Test Set Module down to 89 MHz signals. Any input signals below 270 MHz are passed directly through the four harmonic samplers to the second stage without down-conversion. The drive signal to each of the harmonic samplers is a comb of harmonics generated by a step recovery diode (SRD).

The Power Amplifier provides the signal that drives the SRD. The input to the Power Amplifier is the 357 – 536.5 MHz signal from the A1 First Local Oscillator (LO1) PCB. Regardless of the operating frequency, the Power Amplifier is biased on at all times to insure optimum thermal stability.

The second stage of the Receiver Module uses the 25.0 – 272.5 MHz signal from the A2 Second Local Oscillator (LO2) PCB to down-convert the 89 MHz signals into four 2.5 MHz IF signals TA, TB, RA, RB (two test signals and two reference signals). Either the Reference A or the Reference B IF signal is selected, as is appropriate for Forward/Reverse operation. The resultant three 2.5 MHz IF signals (Test A, Test B, and Reference A/B) are output to the IF Section. A buffered version of the Reference A/B signal is also fed to the A8 Source Lock/Signal Separation Control PCB as the Source Lock signal.

The Receiver Module can also select the Reference A IF signal that is output to the IF Section via the Test A switch path. This IF signal is used during Line Reflect Line (LRL) Calibrations to ratio the Reference A and Reference B signals.

SYSTEM DESCRIPTION

A8, Source Lock/ Signal Separation and Control PCB

The Source Lock Phase Comparator circuit on the A8 Source Lock/ Signal Separation Control PCB compares the Source Lock (Reference A/B) signal from the Receiver Module with a signal derived from the10 MHz reference oscillator. The output of this circuit is the –6 MHz/V correction signal, which is routed to the circuit on the A21A2 Source Control PCB that generates the FM coil tuning current signal. This signal is output to the A21A1 YIG/Bias Controller PCB to fine tune the YIG-tuned oscillator to the exact output frequency. When the YIG-tuned oscillator outputs the exact frequency, the two inputs to the phase comparator circuit on the A8 PCB match and the phase-lock loop is locked.

The A8 PCB Assembly also provides bias and control signals to the Test Set and Receiver Modules for operating the following circuits:

- Transfer Switch
- D Power Amplifier
- **Quad/Sampler Buffer Amplifier**
- □ Front Panel Forward/Reverse LEDs
- *IF Section* The IF Section consists of the items listed below; refer to Figure 7-2.
 - □ A3 Test A IF PCB
 - □ A4, Reference IF PCB
 - □ A5, A/D Converter PCB
 - □ A6, Test B IF PCB
 - □ A7, Third Local Oscillator, LO3, PCB

The IF Section converts the three 2.5 MHz IF signals from the Receiver Module into six DC output signals. The A3 (Test A), A4 (Reference A/B), and A6 (Test B) PCBs down-convert the 2.5 MHz input IF signals to 80 kHz IF signals and then adjust their amplitude for input to the synchronous detector stage of each PCB. Each 80 kHz IF signal is synchronously detected and converted into a pair of DC signals that contain the information for the real and imaginary portions of the original 80 KHz IF signal. Thus, the three IF signals (two test signals and the reference signal) yield six DC signals that fully represent the real and imaginary vector components of the DUT's S-parameters.

The IF Section also checks the 2.5 MHz phase lock signal for proper power level by comparing it to a known reference level on the A4 PCB. A sample of the 2.5 MHz Reference A/B IF signal is sent to the A8 Source Lock/Separation Control PCB assembly for phase locking the signal source module. The A3 and A6 PCBs are functionally identical and physically interchangeable.

ANALOG SUBSYSTEM ASSEMBLIES

A7 PCB, LO3	The A7, Third Local Oscillator (LO3) Assembly, provides a fixed
	2.42 MHz Local Oscillator signal that is used on the A3, A4, and A6 PCBs
	to down-convert the 2.5 MHz IF signals to 80 kHz. It also provides an 80
	kHz standard signal for the IF Section Calibration process that occurs au-
	tomatically approximately every six minutes. This automatic IF Section
	Calibration is one of the 372XXB features that ensures rated measure-
	ment accuracy. Automatic IF Calibration can be turned off and/or in-
	voked at any time during measurement sweeps.
	· · ·

A5 A/D Converter PCB The A5 A/D Converter PCB contains a six-channel, two stage, switched-filter sample-and-hold circuit and a 20 bit A/D converter. Each of the six DC signals from the A3, A4, and A6 PCBs are input to a separate channel of the PCB. The first stage of each channel is a low-pass filter with four selectable cutoff frequencies of 10 kHz, 1 kHz, 100 Hz, and 10 Hz. The second stage of each channel is a sample-and-hold amplifier that stores the signals during the A/D conversion process. Each channel is sequentially selected for input to the 20 bit A/D converter.

The A5 A/D Converter PCB also derives the 109.89 kHz Power Supply Synchronization Signal and the 80 kHz IF Synchronization Signal from the 10 MHz Reference Timebase. Additional functions of the A5, A/D Converter Assembly include:

- □ Measurement of power supply voltages and other internal nodes of the 372XXB for diagnostic purposes.
- □ Measurement of an externally applied analog input signal. This function is used for service purposes only.
- **D** External Trigger Input signal processing (from rear panel)
- **D** External Analog Output signal generation (to rear panel)

The A/D converter circuitry located on the A/5 PCB is used as a DVM to measure various internal system analog monitor points on the A1 – A8 and A21A1/ A21A2 PCBs. It is also used to monitor power supply voltages and other critical points throughout the 372XXB, which can be readout via the Diagnostics Menus. DVM readings are also recorded in the service log for certain system failures.

7-4 DIGITAL SUBSYSTEM ASSEMBLIES

PCB Assembly

The following paragraphs briefly describe the major assemblies that comprise the 372XXB Digital Subsystem. The digital subsystem provides all system control, I/O interface, digital signal processing, and data presentation functions.

The major assemblies that comprise the 372XXB digital PCB subsystem are listed below. Refer to Figure 7-3.

- □ A9, Main Processor PCB
- □ A13, I/O Interface #1 PCB
- □ A14, I/O Interface #2 PCB
- □ A15, Graphics Processor PCB
- □ A16, Hard Disk PCB
- □ A18, Rear Panel Interface
- □ Rear Panel Assembly
- **General Assembly**
- **Gold Floppy Disk Assembly**
- □ A24, VME Bus Terminator PCB

A9 Main Processor The major components that comprise the A9 Main Processor PCB are:

- □ 68040 Microprocessor (w/ integrated co-processor) This is the CPU for the 372XXB system.
- □ 4 MB DRAM This is the main system memory. This memory is volatile (non-battery backed). During normal operation, it stores the 372XXB software that is loaded from disk at power-up.
- 8 KB BBRAM This auxiliary memory chip contains a back-up battery that is continuously recharged whenever power is applied. (The back-up battery has a four year minimum life span.) This chip also contains real time and date clock functions. It is used to store low level boot-up parameters, ALC calibration data, source frequency calibration data, and service log header data.
- 512 KB SRAM This auxiliary memory is backed-up by a non-rechargeable Lithium battery that provides 200 days (maximum) of power-off protection. It is used to store current and saved front panel setups, trace/normalization data, current RF calibration data, current sweep frequency data, flat power calibration data, and the service log error list.
- □ VME Bus interface chip This chip is used to interface the Main Processor PCB to the A13, A14, and A15 digital PCBs (via the VME bus interface).
- □ SCSI Bus interface This chip is used to interface the Main Processor PCB to the A16 Hard Disk PCB.
DigitalSubsystem Block Diagram

Figure 7-3. DigitalSubsystem Block Diagram

SYSTEM DESCRIPTION

372XXB MM

SYSTEM DESCRIPTION

System boot-up EPROM – This chip contains the boot-up instructions used by the system CPU at power-up.

A13 I/O Interface #1 This PCB assembly performs the following functions: PCB Assembly □ Eleppy drive control interface for the Eleppy

- **□** Floppy drive control interface for the Floppy Drive Assembly.
- □ External Keyboard control interface for the front panel Keyboard connector.
- □ Interface for the A18 Rear Panel PCB Assembly (below).
- □ Interface and control for the rear panel IEEE 488.2 GPIB and Dedicated GPIB interface connectors.

A14 I/O Interface #2This PCB assembly contains a State Machine controller, decode logic, and
bus interface control circuits that perform the following functions:

Quiet Bus interface control. The Quiet Bus passes control and data signals from the A9 Main Processor PCB to the A1 – A8, and A21 PCBs and returns status and data signals back to the A9 PCB. This bus is managed by the control circuits on the A14 PCB such that it is inactive during the the time that a measurement is being taken.

NOTE

The output data from the A5 PCB A/D converter is sent to the A9 Main Processor PCB via the Quiet Bus, the A14 PCB, and the VME Bus.

- A/D Bus interface control. During the measurement process, all A/D selection and conversion functions on the A5 PCB are controlled exclusively by the A14 PCB State Machine Controller. This is accomplished via the command lines of the A/D Bus.
- Measurement control functions the A14 PCB State Machine Controller manages many of the 372XXB functions during a measurement, as follows:
 - Quiet Bus interface control
 - A/D Bus interface control:
 - □ Sample and Hold control for A5 PCB
 - □ A/D selection and conversion control for A5 PCB
 - Check for phase lock condition
 - Gain ranging
 - Delay generation for IF Bandwidth setting function

The A14 PCB also provides the interface to the Front Panel A19 and A20 PCBs

	A15 Graphics Proces- sor PCB Assembly	This PCB assembly contains circuitry that simultaneously drives both the internal VGA or LCD monitor and an external VGA monitor (if used), as follows:
		It receives measurement and display information from the A9 Main Processor PCB and generates screen display (video) infor- mation.
		 Provides interface and control for the internal VGA or LCD Mon- itor Assembly.
		 Provides interface for an external monitor via the rear panel VGA Out connector.
	A16 Hard Disk PCB Assembly	The PCB assembly contains a pre-formatted hard disk drive assembly and associated interface circuitry. The A16 PCB interfaces directly with the A9 Main Processor PCB via the (A9) SCSI interface.
	Floppy Disk Drive Assembly	This unit is a standard 1.44 MByte DOS compatible format floppy disk drive. It is physically mounted to the test set tray (not to the Front Panel Assembly). It interfaces to the system via the A13 I/O Inter- face #1 PCB.
	A24 VME Bus Terminator PCB	This PCB assembly terminates the VME bus to insure stable digital data transfer on the bus. It plugs into the VME bus structure on the bottom surface of the A17 Motherboard Assembly.
7-5	MAIN CHASSIS ASSEMBLIES	The assemblies described below are the major assemblies mounted to the basic frame of the 372XXB.
	A17 System Mother- board Assembly	The motherboard assembly provides signal routing and D.C. power distribution paths for all major PCB assemblies of the Analog Subsystem (A1 – A8) and the Digital Subsystem (A9 – A16). It also contains the VME Bus, Quiet Bus, and A/D Bus structures and other signal routing paths. It does not contain any active components.
		NOTE
		The motherboard assembly is an integral part of the 372XXB chassis. It is not a field replaceable unit.
	Front Panel Assembly	The Front Panel Assembly consists of the following assemblies and parts:
		A19 Front Panel Switch PCB – this assembly contains all of the front panel switches for the 372XXB VNA.
		 A20 Front Panel Control PCB – this assembly contains the de- code logic for the switches located on the A19 Front Panel Switch PCB. This PCB interfaces with the A14 I/O Interface #2 PCB As- sembly.
		Front Panel LEDs, beeper, keys, controls, and connectors

SYSTEM DESCRIPTION

- □ Front panel overlay
- □ Front panel casting

NOTE

The front panel is an integrated assembly that is replaceable only as a single unit.

Rear Panel Assembly The Rear Panel Assembly includes the following rear panel connec-

- tors:
 - □ 10 MHz Reference In and Out BNC connectors
 - □ External Trigger BNC connector
 - **D** External Analog Input BNC connector
 - □ External Analog Output BNC connector

This assembly also includes:

- **D** Reference Channel Extension Loops (Option 11)
- □ Main system fan
- □ The A18 Rear Panel PCB and associated connectors, circuitry, and cables (below).

A18 Rear PanelThis PCB assembly contains the rear panel connectors listed below. ItInterface PCBalso includes the associated circuitry and cabling interfaces that link
these connectors (and the rear panel fan assembly) to the A17 Mother-
board PCB and other assemblies within the 372XXB.

- □ IEEE 488.2 GPIB connector (with associated interface circuits)
- Dedicated GPIB connector (with associated interface circuits)
- **D** Printer Out connector (with associated interface circuits)
- □ VGA Out connector
- **CRT** degauss and brightness controls
- □ I/O Connector (and associated interface circuits)– This 25 pin miniature D-sub connector contains:
 - Limits Testing Status TTL outputs
 - Port 1 and Port 2 Bias Inputs.
 - Ext Dig In signal (same as External Trigger BNC)
 - Ext Ana Out signal (same as External Analog Output BNC)

The A18 PCB also contains:

- □ Routing of -24 Vdc power to the rear panel system fan.
- □ Routing of External Analog Out and External Trigger Input signals to the Mother Board.

Power Supply Module The Power Supply Module is a single self contained assembly mounted on the rear panel. This module provides:

- □ Unregulated +5, +9, ±18, and ±27 Vdc supply voltages to the other assemblies of the 372XXB.
- Dedicated AC line connection for the Internal VGA Monitor.
- **D** Thermal and over-current shutdown protection circuitry
- □ Sensing and input power regulation for operation with 85 264 VAC, 48 63 Hz, universal AC line input power.
- □ Internal fan cooling (for power supply module)
- □ Supply voltages distribution

Table 7-1 identifies all 372XXB DC power supply voltages and lists their usage by the various PCB assemblies. Unless otherwise indicated, supply voltages are regulated on the assembly using them. The analog and digital power supply grounds are isolated.

NOTE

All power supply voltages listed in Table 7-1 can be accessed via the A/D bus for measurement by the the A/D converter circuitry (e.g., DVM) located on the A5 A/D PCB assembly.

Voltage	Assemblies Where Used					
+5V	A1, A2, A3, A4, A5, A6, A7, A9, A13, A14, A15, A16, A18, A19/A20 (P.O. Front Panel), A21A1/A21A2 (P.O. Source Module), A24, External Keyboard					
+9V	A1, A2, A7, A8					
+18V	A1, A2, A3, A4, A5, A6, A7, A8, A13					
-18V	A1, A2, A3, A4, A5, A6, A7, A8, A13					
+27V	A1, A2, A5, A7					
-27V	A5, A18					
The following supply voltages are derived from the +/-18 supply voltages on the A13 I/O #1 PCB:						

Table 7-1. 372XXB Power Supply Voltages and Usages

 The following supply voltages are derived from the +/-18 supply voltages on the A13 I/O #1 PCB:

 +12V
 A9, A15

 -12V
 A9, A15

Internal VGA Monitor The internal monitor assembly is powered from a dedicated AC Line from the Power Supply Module. The degaussing and brightness controls for the internal monitor are located on the rear panel for easy access by the operator. There are no internal adjustments for this unit.

NOTE

The internal monitor assembly is not a field repairable unit.

Chapter 8 Remove and Replace Procedures

Table of Contents

8-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
8-2	EQUIPMENT REQUIRED · · · · · · · · · · · · · · · · · · ·
8-3	REMOVE / REPLACE 372XXB COVERS · · · · · · · · · · · · 8-4
8-4	REMOVE / REPLACE THE A1–A9 AND A13–A16 PCBS 8-6 A1 – A9 PCBs 8-6 A13 – A16 PCB's 8-6
8-5	REMOVE / REPLACE A9 PCB BBRAM CHIP· · · · · · · · 8-8
8-6	REMOVE / REPLACE A9 PCB SRAM BATTERY · · · · · · 8-10
8-7	REMOVE / REPLACE A24 VME BUS TERMINATOR PCB · · · · · · · · · · · · · · · · · · ·
8-8	REMOVE / REPLACE FRONT PANEL ASSEMBLY · · · · · · · · · · · · · · · · · · ·
8-9	REMOVE / REPLACE VGA DISPLAY MONITOR · · · · · · 8-14
8-10	REMOVE / REPLACE LIQUID CRYSTAL DISPLAY (LCD) · · · · · · · · · · · · · · · · · · ·
8-11	REMOVE / REPLACE FLOPPY DISK DRIVE · · · · · · · 8-17
8-12	REMOVE / REPLACE REAR PANEL ASSEMBLY · · · · · 8-19
8-13	REMOVE / REPLACE FAN ASSEMBLY · · · · · · · · · · 8-21
8-14	REMOVE / REPLACE POWER SUPPLY MODULE · · · · · · · · · · · · · · · · · · ·
8-15	REMOVE / REPLACE A18 REAR PANEL PCB · · · · · · · 8-22

8-16	REMOVE / REPLACE TEST SET MODULE
	ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	Transfer Switch \cdot · · · · · · · · · · · · · · · · · · ·
	Input Coupler(s)/Low Freq Bridge(s) · · · · · · · · · · · · · 8-26
	Power Amplifier · · · · · · · · · · · · · · · · · · ·
	Buffer Amplifier/Sampler(A31) · · · · · · · · · · · · · · · · 8-27
	Switched Doubler Module Assembly
8-17	REMOVE / REPLACE SIGNAL SOURCE
	MODULE ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	Removal of Signal Source Module · · · · · · · · · · · · · · · 8-29
	A21A2 Source Control PCB · · · · · · · · · · · · · · · · · · ·
	A21A1 Source YIG Bias Control PCB · · · · · · · · · · · · 8-32
	Switched Filter Assembly 8-33
	Down Converter Assembly
	YIG Oscillator Assembly

Chapter 8 Remove and Replace Procedures

8-1 INTRODUCTION

This chapter provides procedures for removing and replacing 372XXB field exchangeable assemblies and components. When using these procedures, please observe the warning and caution notices below.

WARNING

Hazardous voltages are present inside the instrument when ac line power is connected. Turn off the instrument and remove the line cord before removing any covers or panels.

CAUTION

Many assemblies in the 372XXB contain static-sensitive components. Improper handling of these assemblies may result in damage to the assemblies. *Always* observe the static-sensitive component handling precautions described in Chapter 1, Figure 1-2.

8-2 EQUIPMENT REQUIRED All procedures in this chapter require the use of either a #1 or #2 size Phillips type screw driver. Any additional tool requirements are specified at the beginning of each procedure.

8-3 COVERS

Adjustment and troubleshooting operations require removal of the top cover. Replacement of some 372XXB assemblies and parts require removal of all covers. The following procedures describe this process.

NOTE

It is only necessary to loosen the 372XXB handle assemblies to remove the top, bottom, or side covers. However, if the front panel is to be removed, remove the handle assemblies at this time.

Preliminary:

Switch the 372XXB power off. Remove the power cord.

Procedure:

- Step 1. Loosen (or remove) the right and left handle assemblies, as follows:
 - Place the 372XXB on its top (bottom-side up).
 - Loosen/remove the screws at the sides of the handle assemblies.
 - If removing handles, pull them away from unit and set aside.

CAUTION

The green headed screws have Metric threads.

- Step 2. To remove the top cover:
 - Place the 372XXB in normal (top-side up) position.
 - Remove the feet from the two top corners at the rear of the 372XXB (Figure 7-1).
 - **Remove the center screw from rear of the top cover.**
 - Lift and slide the top cover away from the 372XXB.
- Step 3. To remove the bottom cover:
 - Place the 372XXB on its top (bottom-side up).
 - Remove the feet from the two bottom corners at the rear of the 372XXB.
 - **Remove the center screw from rear of the bottom cover.**
 - Lift and slide the top cover away from the 372XXB.
- Step 4. To remove the left cover:

-1 face the of which on his highly blac (monitor down)		Place	the	372XXB	on	its	right	side	(monitor	down).
--	--	-------	-----	--------	----	-----	-------	------	----------	--------

- If not already done, remove the feet from the two left-side corners at the rear of the 372XXB.
- Remove two center screws from the left cover.
- **Remove the center screw from rear of the left side cover.**
- Lift and slide the side cover away from the 372XXB.
- Step 5. To remove the right cover:
 - Place the 372XXB its left side (monitor up).
 - If not already done, remove the feet from the two right-side corners at the rear of the 372XXB.
 - Remove the center screw from rear of the right side cover.
 - Remove the center screw from rear of the right side cover.
 - Lift and slide the side cover away from the 372XXB.

To replace the instrument covers, perform the steps above in the reverse order.

Figure 8-1. Exploded View of 372XXB Chassis Covers

8-4	A1-A9/A13-A16 PCBS	This paragraph provides instructions for removing and replacing the $A1-A9$ and $A13-A16$ PCB's, which are located underneath the cov-
		ers of the large and small card-cages, respectively.

Preliminary:

□ Switch the 372XXB power **off**. Remove the power cord.

Remove the top cover (paragraph 8-3).

A1 - A9 PCBs

Procedure:

Step 1.	Place the 372XXB in normal (top-side up) position.
Step 2.	Remove the two screws that secure the large card-cage cover (Figure 8-2).
Step 3.	Remove the large card-cage cover and set aside.
Step 4.	Lift up on the edge tabs of the selected PCB(s) and lift straight up.

To replace the PCB(s) and covers, perform the steps above in the reverse order.

A13 - A16 PCB's

Procedure:

		Step 1.	Place the 372XXB in normal (top-side up) position.
		Step 2.	Remove the two screws that secure the large card-cage cover (Figure 8-2).
		Step 3.	Remove the large card-cage cover, then remove the small card-cage cover and set aside.
		Step 4.	Lift up on the edge tabs of the selected PCB(s) and lift straight up.
		To replace verse orde	e the PCB(s) and covers, perform the steps above in the re- er.
8 -5	A9 PCB BBRAM CHIP	This parag BBRAM C	graph provides instructions for removing and replacing the Chip located on the A9 Main Processor PCB assembly.

Figure 8-2. A1-A9 and A13-A16 PCB Assemblies Removal Diagram

A9 PCB BBRAM CHIP

Preliminary:

Before removing and replacing the BBRAM Chip it is necessary to save the following calibration data to the hard disk: signal source Frequency, ALC, Source Lock Threshold, LO1 and LO2. Proceed as follows:

Step 1. Press the Option Menu key (Enhancement key group) to display the OPTIONS menu (left).

Select DIAGNOSTICS from the menu. Then select in se-Step 2. quence: H/W CALIBRATIONS | DISK OPERATIONS SAVE TO HARD DISK |HW_CAL.ALL.

NOTE

Also save the calibration data to floppy disk. Label the disk with calibration type (ALL), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

Step 3. Switch the 372XXB power **off**. Remove the power cord.

Remove/Replace Procedure:

- Step 1. Remove the top cover and the large card-cage cover to expose the A1 – A9 PCBs (refer to paragraph 8-3).
- Remove the A9 PCB from the unit. Step 2.
- Locate and remove the BBRAM chip from the A9 PCB. See Step 3. Figure 8-3.
- Step 4. Replace the BBRAM chip on the A9 PCB.
- Step 5. Reinstall the A9 PCB, the large card-cage cover, and the top cover.
- Step 6. Reconnect power cord. Switch 372XXB power on.

Post Replacement Procedure:

Recall the calibration data saved in the Preliminary step from the floppy disk as follows:

- Insert the floppy disk with the previously saved Source Step 1. Frequency and ALC Calibrations Data in the 372XXB floppy disk drive.
- Step 2. Select DIAGNOSTICS from the menu (left). Then select in sequence: H/W CALIBRATIONS | DISK OPERATIONS RECALL CAL FROM FLOPPY DISK HW_CAL.ALL.

REAR PANEL OUTPUT INSTALLED OPTIONS DIAGNOSTICS PERIPHERAL TESTS MULTIPLE SOURCE CONTROL TROUBLESHOOTING (FOR SERVICE ONLY) PRESS <ENTER> H/W CALIBRATIONS (FOR SERVICE TO SELECT ONLY) PRESS <ENTER> TO SELECT H/W CALIBRATIONS DISK OPERATIONS HARDWARE CALIBRATIONS (FOR SERVICE ONLY) LO1 CALIBRATION LO2 CALIBRATION SOURCE FREQUENCY CALIBRATION SOURCE ALC CALIBRATION

OPTIONS

DISK OPERATIONS

PRESS <ENTER> TO

SELECT

PREVIOUS MENU

TRIGGERS

SAVE TO HARD DISK SAVE TO FLOPPY DISK RECALL FROM HARD DISK RECALL FROM FLOPPY DISK DELETE FROM HARD DISK DELETE FROM FLOPPY DISK COPY FROM HARD TO FLOPPY DISK COPY FROM FLOPPY TO HARD DISK PREVIOUS MENU PRESS <ENTER> TO SELECT

DIAGNOSTICS START SELF TEST

READ SERVICE LOG

REMOVE AND REPLACE

A9 PCB BBRAM CHIP

OPTIONS	DIAGNOSTICS	
TRIGGERS REAR PANEL OUTPUT DIAGNOSTICS MULTIPLE SOURCE CONTROL PRESS <enter> TO SELECT</enter>	START SELF TEST READ SERVICE LOG INSTALLED OPTIONS PERIPHERAL TESTS TROUBLESHOOTING (FOR SERVICE ONLY) H/W CALIBRATIONS (FOR SERVICE ONLY) PRESS <enter> TO SELECT</enter>	Step 3. Step 4.
HARDWARE CALIBRATIONS (FOR SERVICE ONLY)	H/W CALIBRATIONS DISK OPERATIONS SAVE TO HARD DISK	
LO1 CALIBRATION LO2 CALIBRATION SOURCE FREQUENCY CALIBRATION SOURCE ALC CALIBRATION DISK OPERATIONS PREVIOUS MENU PRESS <enter> TO SELECT</enter>	SAVE TO FLOPPY DISK RECALL FROM HARD DISK RECALL FROM FLOPPY DISK DELETE FROM HARD DISK DELETE FROM FLOPPY DISK COPY FROM HARD TO FLOPPY DISK COPY FROM FLOPPY TO HARD DISK	
	PREVIOUS MENU	

PRESS <ENTER> TO SELECT

NOTE

If unable to recall calibrations from disk, you must redo the calibration data described in the Preliminary step on the preceeding page.

Ensure the system sweeps several times without errors.

Refer to Chapter 3, Operational Tests. Perform the following:

- Check the Service Log for any new errors. (Note that the service log is non-volatile; it may contain error entries from a previous problem or service operation.)
- Run the Self Test procedure.
- Refer to Chapter 5, Troubleshooting, if any system errors are reported.

Figure 8-3. Location of BBRAM Chip on the A9 PCB

8-6 A9 PCB SRAM BATTERY

This paragraph provides instructions for removing and replacing the SRAM Battery located on the A9 Main Processor PCB assembly.

Preliminary:

Switch the 372XXB power off. Remove the power cord.

CAUTION

The SRAM battery incorporates flammable materials such as lithium and organic solvents. If lithium batteries, such as this one, are mistreated or incorrectly handled, they may *burst open and ignite.* This can result in possible injury or fire. When handling the SRAM battery, carefully following the following precautions:

DO NOT short circuit.

DO NOT disassemble, deform, or apply excessive pressure.

DO NOT heat or incinerate.

DO NOT apply solder directly.

DO NOT mix model or new and old batteries.

DO NOT charge.

ALWAYS check that proper polarity is observed.

Remove/Replace Procedure:

- Step 1. Remove the top cover and the large card-cage cover to expose the A1 A9 PCBs (refer to paragraph 8-3).
- Step 2. Remove the A9 PCB from the unit.
- Step 3. Locate and carefully remove the SRAM battery from the A9 PCB. See Figure 8-4.
- Step 4. Replace the SRAM battery on the A9 PCB, as follows: - Insure that the pins are clean.
 - Note the polarity and carefully press the batterly into the socket.
- Step 5. Reinstall the A9 PCB, the large card-cage cover, and the top cover.

Post Replacement Procedure:

- Step 1. Connect power cord. Switch 372XXB power on.
- Step 2. Ensure the system sweeps several times without errors.

REMOVE AND REPLACE

SAVE/RECALL FRONT PANEL AND CAL DATA SAVE RECALL PRESS <enter> TO SELECT FUNCTION SAVE FRONT PANEL SETUP TO</enter>	RECALL (OR SAVE) FRONT PANEL SETUP IN INTERNAL MEMORY FRONT PANEL SETUP AND CAL DATA ON HARD DISK FRONT PANEL SETUP AND CAL DATA ON FLOPPY DISK	Step 3.	 Refer to Chapter 3, Operational Tests. Perform the following: Check the Service Log for any new errors. (Note that the service log is non-volatile; it may contain error entries from a previous problem or service operation.) Run the Self Test procedure. Refer to Chapter 5, Troubleshooting, if any system er-
INTERNAL MEMORY MEMORY 1 MEMORY 2 MEMORY 3 MEMORY 4 MEMORY 5 MEMORY 6	PRESS <enter> TO SELECT</enter>	Step 4. Step 5.	rors are reported. Use front panel keys to set to Dual Channel Display 1 & 3. Save front panel setup to memory as follows:
MEMORY 7 MEMORY 7 MEMORY 8 MEMORY 9 MEMORY 10 PREVIOUS MENU			 Press the Save/Recall Menu key Select SAVE from menu (top left): then in sequence select: FRONT PANEL SETUP IN INTERNAL MEMORY MEMORY 1
PRESS <enter> TO SELECT OR USE KEYPAD</enter>		Step 6.	Reset system to default settings by pressing the Default key.
SAVE/RECALL FRONT PANEL AND CAL DATA SAVE RECALL PRESS <enter> TO SELECT FUNCTION SAVE FRONT PANEL SETUP TO INTERNAL MEMORY</enter>	RECALL (OR SAVE) FRONT PANEL SETUP IN INTERNAL MEMORY FRONT PANEL SETUP AND CAL DATA ON HARD DISK FRONT PANEL SETUP AND CAL DATA ON FLOPPY DISK PRESS <enter> TO SELECT</enter>	Step 7. Step 8.	 Ensure the system resets to back to the default Quad-Channel display. Refer to Chapter 5, Trouble- shooting, if it does not. Recall the saved memory 1 setup as follows: Press the Save/Recall Menu key Select RECALL from menu (bottom left): then in se- quence select: FRONT PANEL SETUP IN INTERNAL MEMORY MEMORY 1
MEMORY 1 MEMORY 2 MEMORY 3 MEMORY 3 MEMORY 4 MEMORY 5 MEMORY 6 MEMORY 7 MEMORY 7 MEMORY 7 MEMORY 9 MEMORY 10 PREVIOUS MENU PRESS <enter> TO SELECT OR USE KEYPAD</enter>			SRAM Battery

Figure 8-4. Location of SRAM Battery on the A9 PCB

Step 9. Ensure that the system recalls the previously saved Dual Channel Display 1 & 3. Refer to Chapter 5, Troubleshooting, if it does not.

8-7 A24 VME PCB This paragraph provides instructions for removing and replacing the A24 VME Bus Terminator PCB assembly.

Preliminary:

- Switch 372XXB power off. Remove the power cord.
- **Remove bottom cover (paragraph 8-3).**

Remove/Replace Procedure

- Step 1. Place the 372XXB on its top (bottom-side up).
- Step 2. Locate the A24 PCB assembly (Figure 8-5). Unplug A24 PCB assembly from the A17 Motherboard PCB by gently pulling straight up on each side.

CAUTION

Be careful not bend or disturb the hard co-ax lines located near right edge of A24 PCB.

Figure 8-5. Location of the A24 VME Bus Terminator PCB Assembly

This paragraph provides instructions for removing and replacing the 372XXB Front Panel assembly.

Equipment Required:

□ Open-end wrench, 1 in.

Preliminary:

□ Switch 372XXB power **off**. Remove the power cord.

□ Remove handle assembles and all covers (paragraph 8-3).

Remove/Replace Procedure:

- Step 1. Place the 372XXB in normal (top-side up) position.
- Step 2. Remove the four corner screws and the top center screw that secure the front panel assembly to the chassis (see Figure 8-6).
- Step 3. Place the 372XXB on its top (bottom-side up).
- Step 4. Remove the screw that fastens the front panel casting extension lip to the Test Set Module tray. (See diagram at left.)

Figure 8-6. Removal of Front Panel Assembly

	Step 5.	Using a 1 in. open-end wrench, remove the nuts and washers that secure the Port 1 and Port 2 couplers/bridges to the front panel casting.
	Step 6.	Locate the cable from the front panel Power switch to con- nector J20 on the A17 Motherboard PCB. Disconnect at A17, J20 end.
	Step 7.	Locate the cable from the front panel Keyboard interface connector to connector J16 on the A17 Motherboard PCB. Disconnect at A17, J16 end.
	Step 8.	Locate the cables from the front panel Bias Input BNC con- nectors to connector P2 on the A18 Rear Panel PCB. Dis- connect at A18, P2 end. (A18, P2 is the connector nearest to the bottom lip of the rear panel.)
	Step 9.	Gently pull front panel assembly several inches away from chassis. Locate cable from A17 Motherboard PCB to con- nector J1 on A20 Front Panel PCB. Disconnect at A20, J1 end.
	Step 10.	Separate the bias input cables (Step 8) from the cable har- nesses, as necessary for removal. Pull front panel assembly free and set aside.
	To replac verse ord	ee the front panel assembly, perform the steps above in the re- ler.
8-9 VGA MONITOR	This para internal	agraph provides instructions for removing and replacing the VGA Display Monitor assembly.
	Ŧ	NOTE
	l' p	t is not necessary to remove the front panel assembly to perform this procedure.
	Prelimi	nary:
	🗅 Swi	tch 372XXB power off . Remove the power cord.
	🗆 Ren	nove all covers (paragraph 8-3).
	Remove	Replace Procedure:
	Step 1.	Place the 372XXB on its right side (monitor down).
	Step 2.	At rear of monitor assembly, disconnect:
		■ The power cord (from the Power Supply Module)
		■ The data cable from motherboard CRT connector, J14

The two cables from motherboard BRITE/DEGAUSS connector, J15.
 NOTE

All the the cables mentioned above have keyed connectors.

- Step 3. Remove the four screws that fasten the monitor assembly to the chassis (see Figure 8-7). Do **not** unfasten the screw with the blue plastic washer under the screw head.
- Step 4. Gently move the monitor assembly to the rear and lift away from chassis, with cables still attached. Place on work surface next to unit.

To replace the Internal VGA Display Monitor assembly, perform the steps above in the reverse order.

Figure 8-7. Location of Internal VGA Monitor Assembly Mounting Screws

8-10 LIQUID CRYSTAL DISPLAY (LCD)

This paragraph provides instructions for removing and replacing the internal LCD assembly.

NOTE

It is not necessary to remove the front panel assembly to perform this procedure.

Preliminary:

- □ Switch 372XXB power off. Remove the power cord.
- **□** Remove all covers (paragraph 8-3).

Remove/Replace Procedure:

- Step 1. Place the 372XXB on its right side (monitor down).
- Step 2. Disconnect the connector from LCD back light driver PCB Assembly and disconnect Flex PCB Assembly from LCD Assembly.
- Step 3. Remove the four screws that fasten the monitor assembly to the chassis (see Figure 8-8).
- Step 4. Gently move the monitor assembly to the rear and lift away from chassis.
- Step 5. To replace the Internal LCD Monitor assembly, perform the steps above in the reverse order.

Figure 8-8. Location of Internal LCD Assembly Mounting Screws

8-11	LCD BACKLIGHT
	LAMP

This paragraph provides instructions for the removal and replacement of the LCD Backlight Lamp, which is recommended at approximately 10,000 hours of operation, or if the display becomes dim.

NOTE

The front panel assembly does not have to be removed.

Preliminary:

□ Switch 372XXB power off. Remove the power cord.

Remove all covers (paragraph 8-3).

Remove/Replace Procedure:

- Step 1. Remove the LCD assembly (paragraph 8-10).
- Step 2. Remove the Backlight Lamp cover as follows:

On Sharp LQ9D169 LCD displays, remove the three Phillips screws on the side opposite the PCB, then lift off the cover.

On Sharp LQ9D340 LCD displays, on the side opposite the PCB, remove the tape covering the center catch. Starting at one end, very carefully push each catch clear of its tab while gently lifting the cover. Release all five catches and remove the cover.

- Step 3. Replace the Backlight Lamp. Use care not to apply pressure to the area where the glass tube and the end caps of the Backlight Lamp meet.
- Step 4. Reinstall the Backlight Lamp cover.
- Step 5. Reinstall the LCD Assembly and reconnect electrical connectors.
- Step 6. Reinstall the top cover.
- Step 7. Turn the instrument on. Adjust the Brightness Potentiometer at the rear panel for maximum display brightness.
- **8-12** FLOPPY DISK DRIVE This paragraph provides instructions for removing and replacing the Floppy Disk Drive assembly.

NOTE

It is not necessary to remove the front panel assembly to perform this procedure.

Figure 8-9. Location of Floppy Disk Drive Assembly Mounting Plate Screws

Preliminary:

Switch 372XXB power **off**. Remove the power cord.

□ Remove all covers (paragraph 8-3).

NOTE

All the the cables mentioned in the following procedure have "keyed" connectors.

Remove/Replace Procedure:

- Step 1. Place the 372XXB on its top (bottom-side up).
- Step 2. At the floppy drive, disconnect the four-conductor Disk Power cable that connects to J1 of the motherboard PCB.
- Step 3. At J2 on the motherboard PCB, disconnect the Floppy Control (ribbon) cable that goes to the floppy drive.
- Step 4. Remove the three screws that fasten the floppy disk drive mounting plate to the chassis and to the Test Set Module tray (see Figure 8-8).
- Step 5. Carefully pull the floppy disk drive assembly to the rear and up to remove assembly.

REMOVE AND REPLACE

Step 6. Carefully remove the Floppy Control cable from the rear of the floppy drive. Set aside for re-use.

To replace the Floppy Disk Drive assembly, perform the steps above in the reverse order.

8-13 REAR PANEL This paragraph provides instructions for removing and replacing the Rear Panel Assembly.

Equipment Required Option 11 only):

□ Connector torque wrench (⁵/₁₆ in), ANRITSU Model 01-201, or equivalent.

Preliminary:

- □ Switch 372XXB power **off**. Remove the power cord.
- □ Remove all covers (paragraph 8-3).

Remove/Replace Procedure:

Step 1. Place the 372XXB in normal (top-side up) position.

Rear Panel Assembly screws (par 8-11)
 Fan Assembly screws (par 8-12)
 Power Supply Assembly screws (par 8-13)
 A18 Rear Panel PCB screw (par 8-14)

Figure 8-10. Location of Mounting Screws for Rear Panel Assemblies

Step 2.	Remove the three screws on each side of the chassis that fasten to the rear panel assembly. See Figure 8-10.
Step 3.	Remove the two screws located near top and middle of rear panel (near fan-mounting screws). See Figure 8-10.
Step 4.	Locate cable from the rear-panel 10 MHz Ref In BNC con- nector to connector J2 of A7 PCB. Disconnect at A7, J2 end. (Pull up gently to disconnect.)
Step 5.	Locate cable from the rear-panel 10 MHz Ref Out BNC connector to connector J3 of A7 PCB. Disconnect at A7, J3 end.
Step 6.	Locate cable from the rear-panel Ext Anlg In BNC connector to connector J1 of A5 PCB. Disconnect at A5, J1 end.
Step 7.	Place the 372XXB on its right side (monitor down).
Step 8.	Locate the cables from the rear-panel Ext Trigger and Ext Anlg Out BNC connectors to connector P13 of the A18 Rear Panel PCB. Disconnect at A18, P13 end. (A18, P3 is the fourth connector away from the rear panel bottom lip.)
Step 9.	Disconnect the large ribbon cable from connector P1 of the A18 PCB at motherboard connector J12.
Step 10.	Disconnect the two cables from the Power Supply Module at motherboard connectors J4 and J13.
Step 11.	Disconnect power cord from the Power Supply Module to the internal VGA Display Monitor at the display monitor.
Step 12.	If 372XXB is equipped with Option 11, Reference Loop Ex- tension Cables:
	■ Using a ⁵ / ₆ in. wrench, disconnect the external cable Loops from the rear panel connectors.
	■ Using a ⁵ / ₁₆ in. wrench, disconnect the semi-rigid coaxial lines W141 and W145 at the inside of the rear panel. See Figure 8-11 on page 8-23.
Step 13.	If 372XXB is equipped with Option 10, High Stability Time Base:
	Locate output cable from the high stability oscillator as- sembly (mounted above Power supply Module) to connec- tor J1 of A7 PCB. Disconnect at A7, J1 end.
	Locate power cable from the high stability oscillator as- sembly to A17 Motherboard connector, J18. Disconnect

at A17, J18 end.

		Step 14.	Place the 372XXB in normal (top-side up) position. Gently pull rear panel assembly away from chassis and lay flat on work surface. Remove cables from cable harnesses, as re- quired.
		To replac reverse o	e the Rear Panel Assembly, perform the steps above in the rder.
8-14	FAN ASSEMBLY	This para Rear Pan	ngraph provides instructions for removing and replacing the el Fan Assembly.
		Prelimin	nary:
		🗆 Swit	tch 372XXB power off . Remove the power cord.
		🗆 Rem	ove all covers (paragraph 8-3).
		🗆 Rem	ove Rear Panel (paragraph 8-12).
		Remove/	Replace Procedure:
		Step 1.	Place the Rear Panel Assembly on the work surface with the A18 Rear Panel PCB up.
		Step 2.	Disconnect the two conductor fan power cable at connector P6 of the A18 PCB.
		Step 3.	Turn Rear Panel Assembly over, and remove the four screws that fasten the fan guard and fan assembly to the rear panel. See Figure 8-10.
		Step 4.	Remove the fan guard and separate the fan from the rear panel.
		To replac the rever	e the Rear Panel Fan Assembly, perform the steps above in se order.
8-1 5	POWER SUPPLY MODULE	This para Power Su	ngraph provides instructions for removing and replacing the apply Module.
		Prelimin	nary:
		🗆 Swit	tch 372XXB power off . Remove the power cord.
		🗆 Rem	oove all covers (paragraph 8-3).
		🗆 Rem	ove Rear Panel (paragraph 8-12).

Remove/Replace Procedure:

Step 1. Place the Rear Panel Assembly on the work surface with the Power Supply Module down.

A18 REAR PANEL PCB

		Step 2.	Remove the six screws from the rear panel that fasten it to the left and right edges of the Power Supply Module (see Figure 8-10). Gently separate the two units.
		To replac reverse o	e the Power Supply Module, perform the steps above in the rder.
8-16	A18 REAR PANEL PCB	This para A18 Rear	graph provides instructions for removing and replacing the Panel PCB assembly.
		Equipmo	ent Required:
		🗅 Nut	Driver, $\frac{9}{32}$ in.
		🗅 Nut	Driver, $\frac{N}{6}$ in.
		Prelimin	nary:
		🗅 Swit	tch 372XXB power off . Remove the power cord.
		🗆 Rem	ove all covers (paragraph 8-3).
		🗆 Rem	ove Rear Panel (paragraph 8-12).
		Remove/	Replace Procedure:
		Step 1.	Place the Rear Panel Assembly on the work surface with the A18 Rear Panel PCB up.
		Step 2.	Disconnect the two-conductor fan power cable at connector P6 of the A18 PCB.
		Step 3.	Disconnect the wiring for the rear panel Bias Fuses at con- nector P4 of the A18 PCB.
		Step 4.	Turn Rear Panel Assembly over. Remove screw located at lower left corner of the rear panel that fastens the A18 PCB to the Rear Panel Assembly (see Figure 8-10).
		Step 5.	Using a $\frac{9}{32}$ in. nut driver, remove the standoffs that fasten the IEEE 488.2 GPIB and Dedicated GPIB connectors to the rear panel.
		Step 6.	Using a $\frac{3}{16}$ in. nut driver, remove the standoffs that fasten the Printer Out, VGA Out, and External/IO connectors to the rear panel. Set standoffs aside for re-use.
		Step 7.	Carefully separate the A18 PCB from the rear panel.
		To replac in the rev	e the A18 Rear Panel PCB assembly, perform the steps above verse order.

REMOVE AND REPOACE

372XXB MM

TEST SET MODULE COMPONENTS LAYOUT DIAGRAM

TEST SET MODULE COMPONENTS LAYOUT DIAGRAM

Figure 8-12. Test Set Module Components Layout Diagram for Model 37269B (with Options 6 and 11)

REMOVE AND REPOACE

372XXB MM

8-17 TEST SET MODULE ASSEMBLIES

The following paragraphs provide instructions for removing and replacing the RF/microwave components that comprise the Test Set Module .

Equipment Required:

- □ Connector torque wrench (⁵/₁₆ in), ANRITSU Model 01-201, or equivalent.
- **D** Open-end wrench, 1 in.

CAUTION

Throughout these procedures, *always* use the $\frac{5}{16}$ in. connector tor torque wrench for connecting the Test Set Module semi-rigid coaxial lines and RF/microwave components. Use of improper tools may damage the connectors, resulting in degraded instrument performance.

Preliminary:

Switch 372XXB power **off**. Remove the power cord.

□ Remove all covers (paragraph 8-3).

Transfer Switch Use the following procedure to remove/replace the Transfer Switch, which is common to all 372XXB models.

Procedure:

Step 1. For all models except 37269B: disconnect the semi-rigid coaxial line W87 from the input connector of the Transfer Switch. See Figure 8-11.

For Model 37269B: loosen the two screws that fasten the Transfer Switch mounting plate to the test set tray before disconnecting the semi-rigid coaxial line (W80). See Figure 8-12.

- Step 2. Disconnect the Transfer switch.
- Step 3. Carefully flex (do **not** bend) the rigid-coaxial lines to gain access to the lower connectors of the Transfer Switch; see Inset A on Figure 8-11. Remove rigid-coaxial lines from these connectors.
- Step 4. Disconnect the Transfer Switch power cable at connector J5 of the A17 Motherboard PCB. Free the cable by separating it from the cable harness and by temporarily removing the A24 VME Terminator PCB.
- Step 5. Remove the two screws that fasten the Transfer Switch mounting plate to the test set tray, and lift the Transfer Switch assembly from the Test Set Module.

TEST SET MODULE ASSEMBLIES

To replace the Transfer Switch assembly, perform the steps above in the reverse order. W111 for Models 37211B and 37217B

Input Coupler(s)/ Low	Use the following procedure to remove/replace the Input Coupler(s) of
Freq Bridge(s)	all models 37225B through 37269B and the Low Frequency Bridges of
	models 37211B and 37217B.

Procedure:

	Step 1.	Using a 1 in. open-end wrench, remove the front panel nut and washer of the Port1or Port2 coupler/bridge that is to be removed.	
	Step 2.	Disconnect the two semi-rigid coaxial lines associated with the coupler/bridge (see Figure 8-11).	
	Step 3.	Remove the two screws that fasten the coupler/bridge bracket to the test set tray. Move coupler/bridge to the rear and up to remove it from the Test Set Module.	
	To replace order.	e the coupler/bridge, perform the steps above in the reverse	
Power Amplifier	Use the following procedure to remove/replace the Power Amplifier as- sembly, which is common to all 372XXB models.		
	Procedure:		
	Step 1.	Disconnect the Power Amplifier power cable at connector J5 of the A17 Motherboard PCB. Free the cable by separating it from the cable harness and by temporarily removing the A24 VME Terminator PCB.	
	Step 2.	Disconnect the PWR AMP IN cable on the side of the Power	

- Step 2. Disconnect the PWR AMP IN cable on the side of the Power Amplifier assembly; see Figure 8-13. (Pull out gently to disconnect.)
- Step 3. Remove the two screws that fasten the Power Amplifier assembly to the test set tray. Remove the two screws that fastens the assembly feet to the Buffer Amplifier/Sampler assembly.
- Step 4. Disconnect the Power Amplifier from the Buffer Amplifier/Sampler by carefully pulling up on the connector end of the rigid-coaxial line from the Power Amplifier. (See Figure 8-13.) Carefully lift the assembly from the Test Set Module.

To replace the Power Amplifier assembly, perform the steps above in the reverse order.

Figure 8-13. A41 Power Amplifier Assembly, Details

Buffer Amplifier/Use the following procedure to remove/replace the Buffer Amplifier/Sampler(A31)Sampler assemblies of all models.

Preliminary:

□ Remove the Power Amplifier assembly (see previous paragraph).

Procedure:

- Step 1. Disconnect the semi-rigid coaxial lines, W83 and W84, from the 20 dB pads that are part of the Buffer Amplifier/Sampler assembly; see Figure 8-14. (For units with Option 11, the semi-rigid coaxial lines are W46 and W47.)
- Step 2. Disconnect the cables from connectors J1 through J7 of the A31 Buffer Amplifier/Sampler assembly. (Pull up gently to disconnect.) Note that the connector end of each cable is marked with the associated A31 connector number.
- Step 3. Disconnect the two cable connectors from the TEST A connector body on the Buffer Amplifier/Sampler assembly (see Figure 8-14). Similarly, disconnect the two cable connectors from the REF A connector body.

		<i>NOTE</i> The matching pin numbers are identified on the ca- ble connectors and on the connector body.)
	Step 4.	Repeat Step 3 for the TEST B and REF B cable connectors.
	Step 5.	Remove the nine screws that fasten the Buffer Amplifier/Sampler assembly to the test set tray, and lift the assembly from the Test Set Module.
	To replace above in t	e the Buffer Amplifier/Sampler assembly, perform the steps he reverse order.
Switched Doubler Module Assembly	Use the following procedure to remove/replace the Switched Doubler Module (SDM) assembly for Model 37269B.	

Procedure:

Step 1. Disconnect the SDM power cable from connector J17 of the A17 Motherboard PCB. Free cable from cable clip, as necessary.

Figure 8-14. A31 Buffer Amplifier/Sampler Assembly, Details

REMOVE AND REPLACE

Step 2.	Disconnect the semi-rigid coaxial line W81 from the input connector of the SDM; see Figure 8-12.		
Step 3.	Remove the two screws that fasten the SDM to the Test Set Module tray.		
Step 4.	Disconnect the semi-rigid coaxial line W80 from the output connector of the SDM; see Figure 8-12. Carefully lift the as- sembly from the Test Set Module.		
To replace above in t	e the Switched Doubler Module assembly, perform the steps he reverse order.		
The follow placing th Source M ule, the fo	ring paragraphs provide instructions for removing and re- e RF/microwave components that comprise the Signal odule. After replacement of any assembly in the Source Mod- llowing recalibrations should be performed:		

- □ Frequency Calibration
- □ Port 1 ALC Calibration
- □ Port 2 ALC Calibration
- □ Source Lock Threshold (Model 37297B only)

Equipment Required:

□ Connector torque wrench (⁵/₁₆ in), ANRITSU Model 01-201, or equivalent.

CAUTION

Throughout these procedures, *always* use the $\frac{5}{16}$ in. connector tor torque wrench for connecting the Signal Source Module semi-rigid coaxial lines and RF/microwave components. Use of improper tools may damage the connectors, resulting in degraded instrument performance.

Preliminary:

- □ Switch 372XXB power **off**. Remove the power cord.
- □ Remove all covers (paragraph 8-3).

Removal of SignalUse the following procedure to remove the Signal Source Module from
the chassis. This step is necessary before any of the module compo-
nents can be removed/replaced.

Procedure:

- Step 1. Place the 372XXB on its top (bottom-side up).
- Step 2. At J2 on the motherboard PCB, disconnect the Floppy Control (ribbon) cable that goes to the floppy drive. Dress the

8-18 SIGNAL SOURCE MODULES

8-29
SIGNAL SOURCE MODULES

ribbon cable away from the Signal Source Module output connector; see Figure 8-11.

- Step 3. Disconnect the semi-rigid coaxial line W87* from the output connector of the Signal Source Module.
- Step 4. Place the 372XXB in normal (top-side up) position.
- Step 5. Disconnect the cables from connectors J1 and J2 of the A21A2 Source Control PCB. (Pull up gently to disconnect.) Note that the connector end of each cable is marked with the associated A21A2 connector number.
- Step 6. Disconnect the cable from connector J3** of the A21A2 Source Control PCB. Dress cables away from the Signal Source Module.
- Step 7. Remove the three screws that fasten the Signal Source Module to the chassis side rail. See Figure 8-15.
- Step 8. Loosen the two captive screws that fasten the Signal Source Module to the chassis (Figure 8-15).
- Step 9. Pull up at the rear of the Signal Source Module to disconnect the A21A1 Source YIG Bias Control PCB from the A17 Motherboard PCB. Lift the module from the chassis and place on work surface.

To replace the Signal Source Module, perform the steps above in the reverse order.

CAUTION

Never operate unit with J3 disconnected on A21A2 module. The transfer switch may be damaged by high RF power.

W81 for Models 37269B
 Never operate unit with A21A2, J3 disconnected. Refer to Caution statement on

Figure 8-15. Signal Source Module Removal Details

A21A2 Source ControlUse the following procedure to remove/replace the A21A2 Source Con-
trol PCB assembly.

Procedure:

- Step 1. Unfasten the two PCB retainers at the top corners of the A21A2 Source Control PCB (see Figure 8-16). To unfasten, turn screwdriver slot $\frac{1}{4}$ turn *counter-clockwise*.
- Step 2. Pull the top of the A21A2 PCB away from the source module chassis back plate to clear PCB retainers. Gently pull up to disconnect the A21A2 PCB from the socket on the A21A1 Source YIG Bias Control PC. Remove from Source Module.

To replace the A21A2 Source Control PCB assembly, perform the steps above in the reverse order.

SIGNAL SOURCE MODULES

REMOVE AND REPLACE

Figure 8-16. Signal Source Module Assemblies Removal Details

A21A1 Source YIGUse the following procedure to remove/replace the A21A1 Source YIGBias Control PCBBias Control PCB assembly.

Procedure:

- Step 1. Disconnect the Switched Filter assembly power cable from connector J1 of the A21A1 Source YIG Bias Control PCB. (Pull up gently on ribbon cable to disconnect.)
- Step 2. Similarly, disconnect the Down Converter assembly power cable from connector J4 of the A21A1 PCB.
- Step 3. Disconnect the YIG Oscillator assembly power cable from connector J3 of the A21A1 PCB. Pull up on the flexible circuit connector "handle" to disconnect.
- Step 4. Remove the screw that fastens the front apron of the source module chassis to the heatsink of the A21A1 PCB. See Figure 8-16.

	Step 5.	Remove the four screws that fastens the back plate of the source module chassis to the heatsink of the A21A1 PCB.
	Step 6.	Place the Signal Source Module on its' back plate.
	Step 7.	Unfasten the six PCB retainers on the bottom of the A21A1 PCB. (To unfasten, turn screwdriver slot $\frac{1}{4}$ turn <i>counter-clockwise</i> .) Gently separate the A21A1 PCB (including the heat sink) from the Signal Source Module.
	To replace form the s	e the A21A1 Source YIG Bias Control PCB assembly, per- steps above in the reverse order.
Switched Filter Assembly	Use the fo sembly.	ollowing procedure to remove/replace the Switched Filter as-
	Procedu	re:
	Step 1.	Disconnect the power cable from connector P1 at the rear of the Switched Filter assembly. (Use a small screw driver to pry up gently at each end of the connector, as necessary.)
	Step 2.	Disconnect the semi-rigid coaxial lines from connector J6 (top) and connector J3 (lower-front) of the Switched Filter assembly.
	Step 3.	Disconnect the semi-rigid coaxial line from the RF INPUT (top) connector of the <i>Down Converter</i> assembly.
	Step 4.	Remove the two screws that fasten the Switched Filter as- sembly to the source module chassis and lift the assembly from the Signal Source Module.
	Step 5.	Disconnect the semi-rigid coaxial line from connector J1 (bottom) of the Switched Filter assembly. Put this coaxial line aside for re-use.
		NOTE When replacing the Switched Filter assembly, con- nect the semi-rigid coaxial line to the bottom connec- tor (J1), before attaching the assembly to the Signal Source Module.
	To replace the revers	e the Switched Filter assembly, perform the steps above in se order.
Down Converter Assembly	Use the fo assembly.	ollowing procedure to remove/replace the Down Converter

Procedure:

- Step 1. Disconnect the power cable from connector P1 at the front of the Down Converter assembly.
- Step 2. Disconnect the semi-rigid coaxial lines from the RF INPUT connector and RF OUTPUT connector of the Down Converter assembly.
- Step 3. Remove the two screws that fasten the Down Converter assembly to the source module chassis and lift the assembly from the Signal Source Module.

To replace the Down Converter assembly, perform the steps above in the reverse order.

YIG Oscillator
AssemblyUse the following procedure to remove/replace the YIG Oscillator as-
sembly.

Procedure:

- Step 1. Disconnect the YIG Oscillator assembly power cable from connector J3 of the A21A1 PCB. Pull up on the flexible circuit connector "handle" to disconnect.
- Step 2. Disconnect the semi-rigid coaxial line from the connector J6 (top) of the *Switched Filter* assembly.
- Step 3. Remove the four screws that fasten the YIG Oscillator assembly to the source module chassis and lift the assembly from the Signal Source Module.
- Step 4. Disconnect the semi-rigid coaxial line from the output connector of the YIG Oscillator assembly. Put this coaxial line aside for re-use.

NOTE

When replacing the YIG Oscillator assembly, connect the semi-rigid coaxial line removed in Step 4 to the output connector of the YIG Oscillator before attaching it to the Signal Source Module.

To replace the YIG Oscillator assembly, perform the steps above in the reverse order.

Appendix A Diagnostics Menus

Table of Contents

A-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
A-2	DIAGNOSTICS MENUS · · · · · · · · · · · · · · · · · · ·

Appendix A Diagnostics Menus

A-1	INTRODUCTION	This appendix contains descriptions and usage information for the 372XXB Diagnostic Menus that are available via the front panel Option Menu key.	
A-2 diagnostics menus		The internal diagnostic capabilities of the 372XXB are accessed via the Options Menu key, which is part of the front panel Enhancement key group. The selections available from the top level DIAGNOSTICS menu (DG1) are listed below. See Figure A-1.	
		Start Self Test	
		Read Service Log	
		Installed Options	
		Peripheral Tests	
		Troubleshooting	
		H/W Calibrations	
	Start Self Test	The START SELF TEST selection, when invoked, will automatically test circuits throughout the 372XXB. Once invoked, it requires no external devices or interaction by the user. The net pass/fail result of the self-test is written to the CRT screen. Any self test failures will cause detailed failure information to be written into the service log.	
		This menu is available to service and non-service personnel.	
	Read Service Log	The READ SERVICE LOG menu allows for viewing, printing, clear- ing, and saving the internal system service log to floppy disk. The CLEAR LOG function is not recommended for non-service personnel.	
		The Service Log is made up of two parts, the log header and the error listing. The log header contains key system parameters such as initial system turn-on date/time/temperature, current power-on date/time/ temperature, total operational hours, system model, serial, and in- stalled option numbers, date/time/temperature stamp of current ser- vice log viewing session, date/time/temperature of internal hardware calibrations, and statistics about various internal system phase lock- ing activities.	
		The error listing is a time ordered log containing the system faults with details about the system condition at the time of the fault.	

NOTE

The service log must always be printed out or saved to disk and sent to the factory along with a failed assembly. Due to the importance of the information provided by the service log to ANRITSU factory Service Engineers, the exchange prices are only valid if the service log data (disk or printout) is submitted to the factory with the failed assembly. This menu is available to service and non-service personnel. However, the service log should be cleared by service personnel only. **Installed** Options The INSTALLED OPTIONS menu lists installed option numbers and descriptions. This menu is available to service and non-service personnel. Peripheral Tests The PERIPHERAL TESTS menu (DG3) tests the printer and GPIB ports, internal VGA monitor, front panel operation, and the external IBM compatible keyboard (if keyboard is connected). These tests will require some interaction and external devices such as the Printer Test Connector (ANRITSU PN: B39553), a GPIB cable, and an external IBM compatible keyboard as appropriate for the specific test. This menu is available to service and non-service personnel. Troubleshooting The TROUBLESHOOTING menu (DG4) and its sub-menus provide a host of pre-defined internal system modes and sub-system monitors that provide information useful in evaluating proper system operation. Most of these modes do not require any interaction or external test fixtures. (An exception is the FIRST IF BANDPASS selection which requires a thru line to be connected between the test ports.) Menu DG4A and its sub-menus provide low level access to internal system hardware. These menus allow the user to control system latches, switches, and DACs. They also allow selection of key system states such as set-on or search for lock. Many internal analog voltages

may be monitored via the 372XXB built-in DVM monitor network.

CAUTION

Always exit the troubleshooting mode via the DG4 menu selection **FINISHED**, **RECOVER FROM TROUBLE**-**SHOOTING** to insure proper system state recovery from your troubleshooting activities.

These menus are for service personnel only.

H/W Calibrations The H/W CALIBRATIONS menus perform various internal automated hardware calibrations, including ALC and Frequency calibrations. The following equipment is required for these tests:

- □ ANRITSU ML24XXA with Version 2.02 or later, with ANRITSU Power Sensors MA2474A and (TBD) for 65 GHz units, HP 437B Power Meter, or Gigatronics 8541/42 Power Meter.
- □ EIP 20 GHz series counter w/ GPIB (Option -08)

You need only connect the power meter or counter appropriate for the 372XXB model, invoke the calibration desired, and wait until complete. See Chapter 6, Adjustments, for further information.

The disk operations allow storage and retrieval of internal hardware calibration data to and from floppy disk. This feature will be useful when replacing the A9 Processor PCB since it contains the Battery Backed RAM where the internal hardware calibration data resides.

Automated field calibrations for the LO1 and LO2 assemblies are not presently implemented. Should these assemblies fail or require any adjustment, they must be replaced under the exchange assembly program (refer to Chapter 1).

These menus are for service personnel only.

APPENDIX A

Figure A-1. Diagnostics Menus

DIAGNOSTICS MENUS

A-7/A-8

Appendix B Error Messages

Table of Contents

B-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
B-2	OPERATIONAL ERROR MESSAGES · · · · · · · · · · · · 12-3
B-3	DISK RELATED ERROR MESSAGES · · · · · · · · · · · · 12-3
B-4	GPIB RELATED ERROR MESSAGES · · · · · · · · · · · 12-3
B-5	SERVICE LOG RELATED ERROR MESSAGES · · · · · · 12-3

Appendix Error Messages

B-1	INTRODUCTION	This appendix provides a listing of error messages that appear on the 372XXB display or that are written to the internal software Service Log.
B-2	OPERATIONAL ERROR MESSAGES	Table B-1 provides a listing and description of the operational error messages. For the most part, these errors are displayed only on the 372XXB display and are caused by incorrectly operating the 372XXB.
B-3	DISK RELATED ERROR MESSAGES	Table B-2 provides a listing and description of the disk-related-error messages. The numbered errors in this group are also written to the Service Log, since they may indicate system problems.
B-4	GPIB RELATED ERROR MESSAGES	Table B-3 provides a listing and description of GPIB-related error messages. These errors are entered in the Service Log and output as part of the response of OGE/OGL commands.
B -5	SERVICE LOG ERROR MESSAGES	Table B-4 provides a listing of the error messages that are written to the internal system service log. Some of these messages may occur as a result of incorrectly programming the 372XXB. This includes the GPIB errors, 7204–7207, and errors in the 5000 range, RF Power. The RF Power errors may be triggered when setting the 372XXB power to a value greater than its reset level. This feature of the 372XXB lets you take advantage of all available power; however, accuracy cannot be guaranteed when power is unleveled. Refer to Chapter 5, para- graph 5-6 for additional guidance in interpreting these error codes.
		The error messages in Table B-4 are numbered and organized as fol- lows:
	<i>0000 - 0099</i>	These messages generally indicate status or a pass/fail result of a Pe- ripheral or Self test.
	<i>0100 - 3999</i>	These messages primarily indicate a self-test failure with the suspect assembly number being the two high-order digits. For example, error 0111 indicates test 11 for the A1 assembly has failed, similarly, error 0814 is related to the A8 assembly test #14, and error 2138 is related to the A21 assembly test #38.
		Since these errors are primarily self-test errors, they do not get dis- played but only get written to the service log. Any exceptions to this

rule will be an assembly error code between xx00 - xx09, where xx is the assembly that is suspected of failing during normal operation. For example, error 0500 is a run-time error related to the A5 A/D assembly.

- 4000 4999 These messages indicate internal H/W calibration problems.
- *5000 5999* These messages indicate run-time RF power problems.
- *6000 6999* These messages indicate run-time phase lock problems. A letter or sequence of letters following the error message depict the suspect assembly(ies) as follows:
 - \Box A = 10 MHz Reference
 - \square B = LO1 unlocked
 - \Box C = LO2 unlocked
 - $\Box \quad D = Source unlocked$
 - \Box E = IF lock signal level too low
 - \Box F = External synthesizer unlocked
 - \Box G = LO3 unlocked
 - $\Box \quad None = Unknown$
- 7000 7999 These messages indicate a run-time digital section problem.
- 8000 8999 These messages indicate a run-time processing system problem.

Table B-1. Operational Error Messages (1 of 2)

Error Message	Description	Corrective Action	
DIFFERENT H/W SETUP. RECALL ABORTED	Model and/or options is (are) different from the recalled setup.	Reconfigure system to duplicate the hardware setup that was used to store the saved data.	
DIFFERENT S/W VERSION, RECALL ABORTED	Saved state not compatible with soft- ware version or options.	Load compatible software (S/W) ver- sion and retry.	
FREQUENCIES HAVE REACHED UPPER LIMIT	Frequencies being defined in Multiple Source mode have reached upper lim- its of Sources.	Redefine frequencies to not exceed limits of Sources.	
MEMORY LOCATION CORRUPTED	Requested memory location is cor- rupted.	None. If problem reoccurs after stor- ing a new setup, contact ANRITSU Customer Service.	
NO BANDS ARE STORED	No frequency bands have been de- fined and stored.	Define and store frequency bands to turn on Multiple Source mode.	
NO STORED MEMORY DATA	No data is stored in memory for dis- play or trace math.	Store or re-save measurement data.	
OPTION NOT INSTALLED	Selected an option that is not in- stalled.	None.	
OUT OF CAL RANGE	Entered values out of the selected cal- ibration range.	Change calibration range or re-enter values that are within the current range.	
OUT OF H/W RANGE	Entered value is out of the instru- ment's hardware range.	Re-enter values that are within range.	
OUT OF RANGE	Entered value is out of range.	Re-enter values that are within range.	
RECEIVER OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places receiver frequency out of range when attempting to store band.	Redefine frequency.	
SOURCE 1 OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places Source 1 frequency out of range when attempting to store band.	Redefine frequency.	
SOURCE 2 OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places Source 2 frequency out of range when attempting to store band.	Redefine frequency.	
STANDARD CAL NOT VALID FOR WAVEGUIDE	Cannot use the standard method when calibrating with waveguide.	Use the Offset Short method with waveguide.	

 Table B-1.
 Operational Error Messages (2 of 2)

Error Message	Description	Corrective Action
START F FOLLOWS PREVIOUS STOP F	Start frequency of current band imme- diately follows stop frequency of previ- ous band. Cannot be modified.	None.
START MUST BE LESS THAN STOP	Entered start frequency is greater than the stop frequency.	Re-enter frequency values such that the start frequency is lower than the stop frequency.
STEP IS TOO LARGE	Entered harmonic frequency extends the stop out of range.	Re-enter so that harmonic frequency is within range.
STOP IS OVER RANGE	Entered value exceeds the instru- ment's stop frequency.	Re-enter stop frequency.
SYSTEM NOT CALIBRATED	372XXB is uncalibrated for the se- lected measurement values.	Perform a measurement calibration.
TOO FEW POINTS, 2 MINIMUM	Entered too few discrete fill points, 2 is minimum.	Re-enter data points.
TOO MANY POINTS, 1601 MAXI- MUM	Entered too many discrete fill points, 1601 points are the maximum al- lowed.	Re-enter data points.
UNDEFINED DIVIDE BY ZERO	Denominator cannot be zero in equa- tion.	Make denominator a value other than zero.
WINDOW TOO SMALL	Attempted to set time domain range smaller than allowed	Re-enter larger time range.
OUT OF WINDOW RANGE	Attempted to set time domain range larger than allowed	Re-enter values within allowed range.

 Table B-2.
 Disk-Related-Error Messages (1 of 1)

Error Message	Description	Corrective Action	
7140 GENERAL FLOPPY DRIVE FAIL	Invalid disk media or format.	Use 1.44 MB diskette and/or format in the 372XXB.	
7142 FLOPPY DISK READ ERROR	Read error when accessing disk file.	Use 1.44 MB diskette and/or format in the 372XXB.	
7143: FLOPPY DISK WRITE ERROR	Error in writing to disk file.	Use 1.44 MB diskette and/or format in the 372XXB.	
7147 FLOPPY DISK UNAVAILABLE	Floppy disk is not available.	Install floppy diskette and/or check floppy disk drive.	
7170: GENERAL HARD DISK FAIL	General error in accessing hard disk.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.	
7172: HARD DISK READ ERROR	Read error when accessing disk file.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.	
7173: HARD DISK WRITE ERROR	Error in writing to disk file.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.	
7177: HARD DISK UNAVAILABLE	Hard disk is not available.	Install hard disk drive and/or check operation of hard disk.	
8140: GENERAL DISK BUFFER ER- ROR	Out of RAM.	Press the System State, Default Pro- gram key, and retry. This will reset the 372XXB to the factory default state.	
FILE NOT FOUND	Disk file not found.	None.	
FLOPPY DISK HAS NO ROOM FOR FILE	Floppy diskette is full.	Delete files or install new diskette.	
FLOPPY DISK NOT READY	Floppy disk is not ready (or not in- stalled.).	Install diskette in floppy drive.	
FLOPPY DISK WRITE PROTECTED	Write protect tab in place on floppy diskette.	Remove write-protect tab.	
HARD DISK HAS NO ROOM FOR FILE, DELETE EXISTING FILES(S) TO CREATE SPACE	Hard disk is full.	Delete unneeded files.	

Table B-3. GPIB-Related Error Messages (1 of 8)

Error Message	Description		
These errors are entered in the Service Log and output as part of the response of OGE/OGL commands for GPIB commands. The list is subdivided into the type of GPIB error: 7204, 7205, 7206, and 7207.			
	7204 GPIB COMMAND ERROR DESCRIPTIONS		
Faulty program mnemonic syn- tax	Generated when the program mnemonic found was not one of the currently defined program mnemonics for the 372XXB.		
Faulty suffix mnemonic syntax	Generated when the suffix mnemonic found was not one of the currently defined suffix mnemonics for the 372XXB.		
Faulty mnemonic syntax	Generated when the mnemonic found was not one of the currently defined program or suffix mnemonics for the 372XXB.		
Missing Program Message Sep- arator	Generated when the required semicolon preceding the next program mnemonic was not found.		
Expected NRf data	Generated when a mnemonic is used that requires a trailing NRf numeric data ele- ment. The data element was either missing or the first character of the data element was not one of the acceptable NRf characters.		
NRf mantissa too long	The maximum allowable number of characters in the NRf numeric element mantissa is 255.		
Exponent magnitude too large	The maximum allowable exponent magnitude in an NRf element is +/ 32000.		
Faulty NRf syntax	Can be any number of syntactical errors such as more than one decimal point, inclu- sion of a decimal point in the exponent field, an invalid character imbedded in the nu- meric or no exponent value following the 'E'.		
Expected String Program Data	Generated when a mnemonic is used that requires a trailing string data element. The date element was either missing or no open quote character was found.		
Missing close quote character	Generated when a mnemonic is used that requires a trailing string data element. The open quote character was found, but the close quote character was not.		
Expected Arbitrary Block data	Generated when a mnemonic is used that requires a trailing arbitrary block data ele- ment and the trailing element was not an arbitrary block data element. Or in some cases, the arbitrary block was empty.		
Faulty Arbitrary Block	Generated when a defined length arbitrary block data element is terminated early with an EOI or an indefinite length arbitrary block data element is not properly terminated.		
Missing Program Data Separator	Two data elements of a program mnemonic that requires multiple program data ele- ments, are not properly separated from each other by a comma.		

Table B-3.	GPIB-Related	Error	Messages	(2	of	8))
------------	--------------	-------	----------	----	----	----	---

Error Message	Description		
GET received during PM recep- tion	Generated when the GPIB Command 'Group Execute Trigger' is received during the reception of a program message but before its proper termination with the end message. The partial program message up to but not including the 'Group Execute Trigger' will be executed. Execution of the Group Execute Trigger and any subsequent program message elements received before the end message will be skipped.		
	7205 GPIB EXECUTION ERROR DESCRIPTIONS		
Not permitted in a DDT com- mand sequence	When executing a defined device trigger command sequence, a forbidden command was detected.		
Too much Arbitrary Block data	The arbitrary block supplied contained more data than was necessary for the currently defined 372XXB state. This can occur when graph types, start/stop frequencies or data points are changed.		
Insufficient Arbitrary Block data	The arbitrary block supplied did not have enough data for the currently defined 372XXB state. This can occur when graph types, start/stop frequencies or data points are changed.		
Invalid parameter for current graph type	An attempt was made to program a non-existent parameter for the current graph type. For instance, a Smith chart does not have a reference or reference line position (mne- monics OFF and REF).		
Parameter out of range	An attempt was made to program an out of integer range value for a parameter. This error is detected by the GPIB MANAGER when converting and rounding to the appropriate integral size (signed/unsigned char/short or long).		
Parameter value not permitted	A parameter value was not found in the list of permissible values for that parameter.		
CW marker sweep not permitted in time domain	The mnemonics M1C, M2C, M3C, M4C, M5C and M6C are forbidden in time domain.		
Parameter unavailable in fre- quency domain	The mnemonic ODV and OTV are forbidden in frequency domain.		
Port 2 Test Attenuator (OPT 6) not installed	The mnemonic TA2 is forbidden when the attenuator is not installed.		
Time Domain (OPT 2) not in- stalled	An attempt was made to use one of the time domain mnemonics when the option is not installed.		
Return to Local not permitted in Local Lockout	The mnemonic RTL failed due to being in the Local Lockout mode.		
Calibration does not exist	An attempt was made to turn on flat power correction or vector error correction when the corresponding calibration does not exist.		
Cal term not available	An attempt was made to get a calibration term which does not exist for the current cal- ibration type.		

Table B-3.	GPIB-Related	Error Messages	(3 of 8)
------------	--------------	----------------	----------

Error Message	Description	
Invalid cal term for calibration type	An attempt was made to program a calibration term which does not exist for the cur- rent calibration type.	
Front panel setup not valid	An attempt was made to get a front panel setup that did not contain a correct/valid state.	
Normalization data not valid	An attempt was made to reference normalization data when there was no normaliza- tion data currently stored.	
Command sequence too long	An attempt was made to define a device trigger command sequence which had more than 255 characters.	
Unable to display menu	An attempt was made to display a menu which could not be displayed for the current 372XXB state.	
String too long	An attempt was made to enter a string for the following mnemonics which exceeded the specified maximum length.	
	LTD, LID, LMS and LNM - maximum length is 15 characters.	
	LOC - maximum length is 79 characters.	
Must specify a calibration type first	In order to perform a calibration, the calibration type must be specified by the use of one of the Cxx mnemonics (i.e. C12, C8T, etc.) PRIOR to the issuance of the mnemonics CWC, TDC or BEG.	
Parameter value unchanged	An attempt was made to change a start/stop frequency or number of data points to a value outside of the current calibrated range with correction turned on.	
Parameter change not permitted	An attempt was made to perform an illegal state change or action based on the cur- rent 372XXB state. This includes attempting to store an undefined band definition. Or certain changes from the calibration state or the calibration define state when defining discrete frequencies.	
Parameter value out of range Parameter out of hardware range	An attempt was made to set a parameter to a value outside of the permissible range of values for the parameter.	
Standard cal method not valid for waveguide	In a waveguide type of calibration, the standard (OSL) cal method is forbidden.	
Out of calibrated range	An attempt was made to change a parameter not permitted to be changed with correc- tion on.	
Start must be must be less than stop	An attempt was made to set a new start frequency, distance or time greater than or equal to the current stop frequency, distance or time. Or to set a new stop frequency, distance or time less than or equal to the current start frequency, distance or time.	
Tune mode requires a 12 term calibration	Perform a 12 term calibration prior to turning on tune mode.	

Error Message	Description	
Current and cal frequencies dif- ferent	The flat power calibration setup does not match the current setup.	
Stored data is invalid	An attempt was made to reference normalized data when normalized data was invalid.	
Parameter change not permitted on current state	An attempt was made to change a parameter while IF cal was active. It is not expected that this message will ever be seen. If you see this message, notify the factory.	
Calibration may not be valid	An attempt was made to repeat the previous calibration when there was no record of a previous calibration.	
Calibration does not exist	An attempt was made to turn on flat power correction or vector error correction when the corresponding calibration does not exist.	
Current calibration is erased	When turning on Multiple Source Mode with vector error correction on, the calibration is destroyed. Not really an error. Message is issued as a warning.	
Time Domain and CW mode not permitted	An attempt was made to turn on a time domain mode in CW. This is not permitted.	
Not permitted in Time Domain	An attempt was made to select a group delay display or CW mode when in time do- main mode or to select a dual overlay display with a frequency/time domain mismatch.	
Time Domain not allowed	An attempt was made to turn on a time domain mode but the current 372XXB state does not permit it.	
Permitted only in diagnostic mode	Must put the 372XXB into the diagnostics mode via the SDG command before using this mnemonic.	
Graph types not appropriate for dual overlay	While in dual overlay mode, and attempt was made to change one of the active graph types to a type which conflicts with dual overlay, or to change one of the active channels into or out of time domain which sets up a dual overlay conflict. Or an attempt was made to select dual overlay mode when there would be a graph type conflict for a frequency/time domain conflict.	
New Discrete Fill not allowed in current state	Cannot set up a new discrete fill definition while performing a calibration or when cor- rection is turned on. Also cannot do this when group delay is the graph type on the active channel.	
Low Pass mode requires a har- monic sweep	Perform a TD harmonic sweep calibration prior to using this mnemonic.	
Receiver out of range by equa- tion	Problems with the internal source, external source or receiver equations in multiple source mode.	
New start less than previous stop	An attempt was made to set the start frequency for the new multiple source mode band definition to a frequency less than the stop frequency of the previous band.	

Table B-3. GPIB-Related Error Messages (4 of 8)

 Table B-3.
 GPIB-Related Error Messages (5 of 8)

Error Message	Description	
Bad filename	The supplied filename was bad. The filename can have 8 characters maximum. No extensions. The filename must start with and alpha type character (A thru Z). After that the allowable characters are alpha, numeric (0 thru 9) and underscore (_).	
Conflict with rotary knob	You should not be using the rotary knob and the GPIB at the same time.	
Too many data points for exter- nal source	A 6700B series external source can handle 501 data points. A 68000 series external source can handle 999 data points.	
Recalled setup corrupted Hardware mismatch in recalled setup Software mismatch in recalled setup	These are problems with the recalled setup.	
Too many data points for Dis- crete Fill	The maximum number of data points in discrete fill is 1601.	
Not enough data points for Dis- crete Fill	The minimum number or data points in discrete fill is 2.	
Discrete Fill end frequency out of range	The number of points for discrete fill puts the end frequency out of range.	
Step is too large	When setting up a time domain harmonic sweep, cannot get 2 data points because the start frequency is too high for the approximate stop frequency. In a group delay display, the delay aperture percent of sweep is less than one step size.	
Range too small	An attempt was made to set a distance or time span value too small. This can also be done via inappropriate values for start and stop.	
Start or stop out of range	An attempt was made to set a distance or time start or stop value out of range. This can also be done via inappropriate values for center and span.	
No bands defined	An attempt was made to turn on multiple source mode with no band definitions.	
Out of frequencies for new band definition Source out of range by equation External source out of range by equation	The current set of multiple source mode bands use up all the frequency range of the 372XXB. Therefore, no more bands can be defined.	
File is read only	An attempt was made to write to a write protected file.	
File not found	An attempt was made to access a non-existent file.	
Floppy drive not ready	An attempt was made to access the floppy drive with no floppy disk installed.	
Floppy disk full Hard disk full	An attempt was made to write to a floppy disk or the hard disk when no space was left on the disk.	

APPENDIX B

Error Message	Description	
Floppy disk write protected	An attempt was made to write to a write protected floppy disk.	
Recalled setup or data file cor- rupt	An attempt to recall a setup from internal memory, the GPIB or disk failed due to soft- ware revision or hardware mismatch or checksum error.	
New frequency list not allowed in current state	Cannot set up a new discrete fill definition while performing a calibration or when cor- rection is turned on. Also, cannot do this when group delay is the graph type on the active channel.	
State change not permitted	An attempt was made to perform an illegal state change or action based on the cur- rent instrument state. This includes attempting to store (1) an undefined band defini- tion, (2) certain changes from the calibration state, or (3) the cal define state when defining discrete frequencies.	
Faulty label or file name	The label or file name associated with the current mnemonic is faulty.	
Illegal characters in filename	The first character in a filename must be an alpha type. The remaining characters can be alpha, numeric, or underscores. An extension is not permitted.	
Filename too long	The maximum ledngth for filenames is 8 characters. An extension is not permitted.	
Floppy disk read error Floppy disk write error Hard disk read error Hard disk write error	Read or write error(s) occurred while attempting to access the indicated disk.	
Floppy disk not found Hard disk not found General disk buffer error General floppy drive failure Floppy disk init failure General hard disk failure Hard disk control failure Hard disk init failure Unknown disk error	Other error messages which suggest that the indicated drive is in need of service.	

Table B-3. GPIB-Related Error Messages (6 of 8)

7205 GPIB QUERY ERROR DESCRIPTIONS

No Response data available	Generated if the controller attempts to read response data from the 372XXB and none is available.
No Response data after PM completion	This is the same as the 'no response data available' case above except that a pro- gram message was currently being parsed and executed when the controller at- tempted to read data. Detection of this error was deferred until the parser/execution block was finished with the current program message and it was observed that no re- sponse data was generated.

Response after Indefinite Re- sponse discarded	This error is generated when the 372XXB's output queue has already received an Ar- bitrary ASCII response data element and an attempt is made to place another re- sponse data element of any kind into the queue. The new response data element is discarded.
Interrupted - Response data dis- carded	This error is detected when the output queue contains unread response data and the controller sends a new program message. The response data is discarded.
Unterminated - Partial PM will be executed	This error is detected when the 372XXB's input queue is currently receiving a program message but has not yet received the end message, and the controller attempts to read response data from the 372XXB. The partial program message in the input queue is executed as if it were properly terminated.
Deadlock - Response data dis- carded	This error is detected when both of the 372XXB's input and output queues are full and the controller attempts to send another data byte. In order to prevent bus deadlock, the contents of the output queue are discarded.
	7205 GPIB DEVICE DEPENDENT ERROR DESCRIPTIONS
Q_SEND failure in [a procedure	An unsuccessful attempt was made to send a message to a task.
namej	The procedure name is the place in the software where the error was detected.
Q_RECEIVE failure in [a proce- dure name]	A failure was detected while waiting for the reception of a message from a task.
	The procedure name is the place in the software where the error was detected.
Unable to allocate memory in [a procedure name]	An attempt was made to allocate some temporary memory in order to accomplish a task directed in the program message.
	The procedure name is the place in the software where the error was detected.
Unable to release memory in [a procedure name]	An attempt was made to return some temporary memory within a task and the return failed for some reason.
	The procedure name is the place in the software where the error was detected.
Unable to get service/error log	An unsuccessful attempt was made to get a copy of the service or error log.
Unable to get calibration term	An unsuccessful attempt was made to get a calibration term.
Unable to get raw or corrected data	An unsuccessful attempt was made to get raw or corrected data.
Unable to get final data	An unsuccessful attempt was made to get final data.
Unable to get setup or data	An unsuccessful attempt was made to get the frequency list from the database.

An unsuccessful attempt was made to get a front panel setup.

Description

Table B-3. GPIB-Related Error Messages (7 of 8)

Error Message

Unable to get setup

APPENDIX B

Error Message	Description
Unable to store setup	An unsuccessful attempt was made to save a front panel setup.
Unable to get frequency list	An unsuccessful attempt was made to get setup, trace, or tabular datat from the data- base.
Unable to store label	An unsuccessful attempt was made to store a label in the database.
Calibration step failure	An error occurred while waiting for completion of a data collection sequence in calibra- tion.

 Table B-3.
 GPIB-Related Error Messages (8 of 8)

 Table B-4.
 Service Log Error Messages (1 of 3)

0000 INFORMATIONAL MESSAGE	0511 A TO D COMM FAIL
0000 SELF TEST INFO MESSAGE	0512 A TO D 8 BIT D TO A FAIL
0094 PRNT INTERFACE TEST PASSED	0513 A TO D 12 BIT A TO D FAIL
0095 PRNT INTERFACE TEST FAILED	0514 A TO D STEERING DAC FAIL
0096 GPIB INTERFACE TEST PASSED	0515 A TO D CONV ACCURACY FAIL
0097 GPIB INTERFACE TEST FAILED	0516 A TO D SAMPL HOLD FAIL
0098 SELF TEST PASSED	0517 IF SYNC FAIL
0099 SELF TEST FAILED	0518 PWR SUPPLY SYNC FAIL
0111 LO1 COMM FAIL	0519 A TO D EXT ANAL OUTP FAIL
0112 LO1 PRE TUNE DAC FAIL	0520 PWR SUPPLY +5V FAIL
0113 LO1 PHS LCK IND FAIL	0521 PWR SUPPLY +9V FAIL
0114 PHS LCK ERR VOL OUT OF TOL	0522 PWR SUPPLY +12V FAIL
0115 LO1 LCK TIME FAIL	0524 PWR SUPPLY +18V FAIL
0211 LO2 COMM FAIL	0525 PWR SUPPLY -18V FAIL
0212 LO2 MAIN PREST DAC FAIL	0526 PWR SUPPLY +27V FAIL
0213 LO2 OFFS PREST DAC FAIL	0527 PWR SUPPLY -27V FAIL
0214 MAIN PHS LCK ERR VOL FAIL	0611 TB IF COMM FAIL
0215 OFFST PHS LCK ERR VOL FAIL	0612 TB IF 10V REF FAIL
0216 DDS PHS LCK ERR VOL FAIL	0613 TB IF LEVEL STATUS FAIL
0217 MAIN PHS LCK IND FAIL	0614 TB PHS CONTROL FAIL
0218 OFFST PHS LCK IND FAIL	0711 LO3 COMM FAIL
0219 DDS PHS LCK IND FAIL	0712 LO3 REF OSC FAIL
0220 LO2 LCK TIME FAIL	0713 LO3 48.4 LCK IND FAIL
0221 LO2 SRC TRACKING FAIL	0714 LO3 48.4 LCK ERR VOL FAIL
0311 TA IF COMM FAIL	0715 LO3 CAL REF PHS FAIL
0312 TA IF 10V REF FAIL	0811 SL SIG SEP COMM FAIL
0313 TA IF LEVEL STATUS FAIL	0812 DAC ADJUSTMENT FAIL
0314 TA PHS CONTROL FAIL	0813 TRANSFER SWITCH CNTRL FAIL
0411 REF IF COMM FAIL	0814 SRC LCK POL CONTROL FAIL
0412 REF IF 10V REF FAIL	0815 DIRECT MODE ATTEN FAIL
0413 REF IF LEV STATUS FAIL	0911 A9 VME BUS INTERFACE FAIL
0414 REF PHS CONTROL FAIL	0912 BBRAM CHECK FAIL
0500 A TO D CONVERSION FAIL	0913 SRAM CHECK FAIL

APPENDIX B

 Table B-4.
 Service Log Error Messages (2 of 3)

2127 SRC ALC CAL BND1 FAIL
2128 SRC ALC CAL BND2 FAIL
2129 SRC ALC CAL BND3 FAIL
2130 SRC ALC CAL BND4 FAIL
2131 SRC ALC CAL BND5 FAIL
2132 SRC ALC CAL BND6 FAIL
2133 SRC ALC CAL BND7 FAIL
2134 SRC ALC CAL BND8 FAIL
2135 SRC ALC CAL BND9 FAIL
2136 SRC ALC CAL BND10 FAIL
2137 SRC A1 FM PATH TUNE FAIL
2138 SRC A2 FM PATH TUNE FAIL
4100 LO1 CAL FAIL
4200 LO2 CAL FAIL
4301 SRC FREQ CAL MEAS UNSTABLE
4302 SRC FREQ FM MAIN CAL FAIL
4303 SRC FREQ FM SENS CAL FAIL
4304 SRC FREQ CAL VERIFY FAIL
4401 SRC ALC LOG AMP CAL FAIL
4402 SRC ALC CAL VERIFY FAIL
4500 IF CAL FAIL
4600 GAIN RANGING ERROR
4700 STATE MACHINE FAIL
5110 RF PWR UNLEVELED
5210 REF A CHAN RF OVERLOAD
5220 REF B CHAN RF OVERLOAD
5230 TA CHAN RF OVERLOAD
5240 TB CHAN RF OVERLOAD
6001 - 6128 PHASE LOCK FAILURE
7100 FILE MARKED READ ONLY
7140 GENERAL FLOPPY DRIVE FAIL
7142 FLOPPY DISK READ ERROR
7143 FLOPPY DISK WRITE ERROR

 Table B-4.
 Service Log Error Messages (3 of 3)

7146 FLOPPY DISK CHANGED	7222 PLOTTER OUT OF PAPER
7147 FLOPPY DISK UNAVAILABLE	7223 PLOTTER PEN UP
7169 FLOPPY INIT FAIL	7230 POWER METER NOT RESPONDING
7170 GENERAL HARD DISK FAIL	7240 FRQ COUNTER NOT RESPONDING
7172 HARD DISK READ ERROR	7250 EXT SOURCE NOT RESPONDING
7173 HARD DISK WRITE ERROR	7310 PRINTER NOT RESPONDING
7177 HARD DISK UNAVAILABLE	7311 PRINTER NOT READY
7199 HARD DISK INIT FAIL	7312 PRINTER OUT OF PAPER
7200 IEEE 488.2 GPIB BUS ERROR	7320 AUX I/O PORT ERROR
7201 ABORTED MESSAGES	7330 SERIAL PORT ERROR
7202 NOTHING TO SAY	7340 ETHERNET PORT ERROR
7203 NO LISTENER ON BUS	7350 EXT TRIG RATE TOO FAST
7204 GPIB COMMAND ERROR	7410 EXT KYBD ERROR
7205 GPIB EXECUTION ERROR	8100 PWR FAIL
7206 GPIB DEVICE SPECIFIC ERROR	8110 GENERAL VME BUS FAIL
7207 GPIB QUERY ERROR	8120 GENERAL MEMORY FAIL
7210 DEDICATED GPIB BUS ERROR	8121 NON-VOLATILE MEMORY FAIL
7220 PLOTTER NOT RESPONDING	8130 PROCESSING FAIL
7221 PLOTTER NOT READY	8140 GENERAL DISK BUFFER ERR

Appendix C Connector Maintenance Check Procedures

Table of Contents

C-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
C-2	PRECAUTIONS · · · · · · · · · · · · · · · · · · ·
C-3	REPAIR/ MAINTENANCE · · · · · · · · · · · · · · · · · · ·

Appendix C Connector Maintenance Check Procedures

This appendix provides general, precautionary information and instructions pertaining to precision connectors.

The following paragraphs are precautionary notes relating to maintenance considerations for precision connectors

Pin Depth Problems

Based on ANRITSU precision components returned for repair, destructive pin depth of mating connectors is the major cause of failure in the field. When a precision component is mated with a connector having a destructive pin depth, damage will likely occur to the precision component's connector. A connector is considered to have destructive pin depth when the center pin is too long in respect to the connector's reference plane (Figure C-1).

Before mating an unknown or new device with your 372XXB Port connectors or calibration devices, always measure the pin depth of the device's connectors. Use a ANRITSU Pin Depth Gauge, or equivalent, for these measurements (Figure C-2). Also, measure the connector pin-depth of a device when intermittent or degraded performance is suspected.

Gauging sets for measuring the pin-depth of precision connectors are available from your nearest ANRITSU Service center, or from the factory. Instructions for measuring connector pin-depth are included with the gauging set(s).

Figure C-2. Pin Depth Gauge

C-1 INTRODUCTION

C-2 PRECAUTIONS

Pin-Depth Tolerance

The center pin of a precision connector has a tolerances measured in mils (one mil = 1/1000 inch). The connectors of test devices may not be precision types and they may not have the proper pin-depth. These connectors should be measured before mating to ensure suitability.

When gauging pin depth, if the connector being measured indicates out of tolerance in the "+" region of the gauge (Table C-1), the center pin is too long. *Mating under this condition will likely damage the mating connector*. On the other hand, if the test device connector indicates out of tolerance in the "-" region, the center pin is too short. While this will not cause any damage, it will result in a poor connection and a consequent degradation in performance.

Port/ Conn. Type	Pin Depth (MILS)	Gauge Reading
GP7C-	+0.000 -0.003	Same As Pin Depth
N Male	20 -0.000 7 +0.004	20 +0.000 7 -0.004
N Female	20 -0.004 7 +0.000	
3.5 mm Male, Female	-0.000 +0.002	Same As
K Male, Female	+0.0000 -0.0035	Pin Depth
V Female	+0.000 to -0.001	

Table C-1. Connector Pin-Depth Tolerance

Avoid Over Torquing Connectors	Over-torquing connectors is destructive; it may damage the connector center pin. Finger-tight is usually sufficient, especially on Type N con- nectors. Should it be necessary to use a wrench to tighten SMA or WSMA connectors, use a torque wrench that breaks at 8 inch-pounds. As a general rule, <i>never use pliers to tighten connectors.</i>
Teflon Tuning Washers	The center conductor on many precision connectors contains a small teflon tuning washer located near the point of mating (interface). This washer compensates for minor impedance discontinuities at the interface. The washer's location is critical to the connector's performance. <i>Do not disturb it.</i>
Avoid Mechanical Shock	Precision connectors are designed to withstand years of normal bench handling. Do not drop or otherwise treat them roughly. They are labo- ratory-quality devices, and like other such devices, they require care- ful handling.

C-3

Keep Connectors Clean	The precise geometry that makes a precision connector's high perfor- mance possible can be disturbed by dirt and other contamination ad- hering to connector interfaces. When not in use, keep the connectors covered.
Visual Inspection	Precision connectors should be inspected periodically. Check for the following:
	 Bent or broken center pin Damaged threads Other bent or damaged connector parts Dirt or foreign material in connector cavity.
REPAIR/ MAINTENANCE	ANRITSU recommends that no maintenance other than cleaning be attempted by the customer. Any device with a suspected defective con- nector should be returned to ANRITSU for repair and/or service when

needed.

Appendix D Performance Specifications

SYSTEM PERFORMANCE

Frequency Range:

RF Models: 37217B 22.5 MHz to 8.6 GHz

Microwave Models

mon o mar o moa	
37225B	40 MHz to 13.5 GHz
37247B	40 MHz to 20 GHz
37269B	40 MHz to 40 GHz
37297B	40 MHz to 65 GHz

Dynamic Range:

The following table gives dynamic range in two manners. "Receiver Dynamic Range" is defined as the ratio of the maximum signal level at Port 2 for 0.1 dB compression to the noise floor at Port 2. "System Dynamic Range" is defined as the ratio of the power incident on Port 2 in a through line connection to the noise floor at Port 2 (forward measurements only). In preparing the table, 10 Hz IF bandwidth and 512 averages were used in calibration and measurement.

Model	Freq (GHz)	Max Sig- nal Into Port 2 (dBm)	Noise Floor (dBm)	Receiver Dynamic Range	Port 1 Power (dBm)	Sys. Dy- namic Range
	0.0225	+3	-95	98	0	95
37217B	2	+3	-98	101	0	98
	8.6	+3	-98	101	0	98
	0.04	+20	-70	90	0	70
37225B	2	+3	-98	101	0	98
	13.5	+3	-98	101	0	98
	0.04	+20	-70	90	0	70
37247B	2	+3	-98	101	0	98
	20	+3	-96	99	0	96
	0.04	+20	-70	90	0	55
37260B	2	+3	-98	101	0	83
572030	20	+3	-95	98	-5	80
	40	+3	-93	96	-15	78
	0.04	+20	-77	97	+10	70
	2	+3	-105	108	+10	98
27207P	20	+3	-97	100	-2	90
31291D	40	+3	-95	98	-7	78
	50	+3	-87	90	-2	80
	60	+3	-77	80	-2	70

High Level Noise (typical)

<0.03 dB and <0.4° peak-to-peak variation in a 1 kHz IF bandwidth up to 20 GHz. <0.08 dB and <0.5° peak-to-peak variation up to 40 GHz.

Measurement Throughput:

Measurement times are based on a single 40 MHz to 20 GHz sweep with 10 kHz IF bandwidth (no averages) after a full 12-term calibration. Sweep times include retrace and bandswitch times.

Measurement Time (ms) vs. Data Points (typical):

Calibration	Data Points				
Туре	3	51	101	401	1601
1 Port (3 Term)	60	250	330	960	3300
Full 2 Port	60	270	400	1000	3600

Measurement Time vs. Sweep Mode for 101 Data Points (typical):

Sweep Mode	Time (ms)
Linear	350
List	350
CW	230

Measurement Time vs. IF Bandwidth for 101 Data Points (typical):

IF Bandwidth	Time (ms)
10 kHz	350
1 kHz	530
100 Hz	1900
10 Hz	14000

Measurement Time vs. Span for 101 Data Points (typical):

Frequency Span	Time (ms)
40 MHz to 40 GHz	500
20 GHz to 40 GHz	400
10 GHz to 11 GHz	250

TEST PORT CHARACTERISTICS

The specifications in the following table apply when the proper Model 34U Universal Test Port Adapters are connected, with or without phase equal insertables, to the test set ports and calibrated with the appropriate Anritsu or other designated calibration kit at $23^{\circ}C \pm 3^{\circ}C$ using the OSL calibration method with a sliding load to achieve
Connector	Frequency (GHz)	Directivity (dB)	Source Match (dB)	Load Match (dB)	Reflection Frequency Tracking (dB)	Transmission Frequency Track- ing (dB)	Isolation (dB)
GPC-7	0.0225	>52	>44	>52	±0.003	±0.004	>105
	2.0	>52	>44	>52	±0.003	±0.004	>115
	18	>52	>42	>52	±0.004	±0.012	>112
GPC-7 LRL	2.0	>60	>60	>60	±0.001	±0.001	>115
Calibration	18	>60	>60	>60	±0.001	±0.001	>112
N-Type	0.0225	>46	>36	>46	±0.004	±0.004	>105
	2.0	>44	>36	>44	±0.004	±0.004	>115
	18	>40	>32	>40	±0.005	±0.012	>112
3.5 mm	0.0225	>44	>40	>44	±0.005	±0.030	>105
	2.0	>44	>40	>44	±0.005	±0.030	>115
	20	>44	>38	>44	±0.006	±0.050	>110
	26.5	>44	>34	>44	±0.006	±0.070	>102
К	0.0225	>42	>40	>42	±0.005	±0.030	>105
	2.0	>42	>40	>42	±0.005	±0.050	>115
	20	>42	>34	>42	±0.006	±0.070	>110
	40	>38	>34	>38	±0.006	±0.080	>100
V	0.04	>70	>36	>40	±0.050	±0.030	>105
	2.0	>40	>36	>40	±0.050	±0.050	>115
	20	>40	>36	>40	±0.060	±0.070	>110
	40	>36	>32	>36	±0.060	±0.080	>100
	50	>34	>30	>34	±0.080	±0.100	>90
	65	>34	>28	>34	±0.100	±0.120	>80

12-Term error correction (A 90 minute warm-up time is recommended.)

MEASUREMENT CAPABILITIES

Number of Channels: Four independent measurement channels.

Parameters: S11, S21, S22, S12, or user-defined combinations of a1, a2, b1, and b2. All measurements are made without the need to manually reverse the test device. **Measurement Frequency Range:** Frequency range of measurement can be narrowed within the calibration range without recalibration. CW mode permits single frequency measurements, also without recalibration. In addition, the system accepts N discrete frequency points where 2tN±1601.

Domains: Frequency Domain, CW Draw, and optional High Speed Time (Distance) Domain.

Formats: Log Magnitude, Phase, Log Magnitude and Phase, Smith Chart (impedance), Smith Chart (Admittance), Linear Polar, Log Polar, Group Delay, Linear Magnitude, Linear Magnitude and Phase, Real, Imaginary, Real and Imaginary, SWR, Power.

Data Points: 1601 maximum. Data points can be switched to a value of 801, 401, 201, 101, or 51 points without recalibration (if 1601 points were used in the calibration). In addition, the system accepts an arbitrary set of N discrete data points where: $2 \pounds N \pounds 1601$. CW mode permits selection of a single data point without recalibration.

Reference Delay: Can be entered in time or in distance (when the dielectric constant is entered). Automatic reference delay feature adds the correct electrical length compensation at the push of a button. Software compensation for the electrical length difference between reference and test is always accurate and stable since measurement frequencies are always synthesized. In addition, the system compensates reference phase delay for dispersive transmission media, such as waveguide and microstrip.

Markers: Six independent markers can be used to read out measurement data. In delta-reference marker mode, any one marker can be selected as the reference for the other five. Markers can be directed automatically to the minimum or maximum of a data trace.

Enhanced Markers: Marker search for a level or bandwidth, displaying an active marker for each channel, and discrete or continuous (interpolated) markers.

Marker Sweep: Sweeps upward in frequency between any two markers. Recalibration is not required during the marker sweep.

Limit Lines: Either single or segmented limit lines can be displayed. Two limit lines are available for each trace. Single Limit Readouts: Interpolation algorithm determines the exact intersection frequencies of test data and limit lines.

Segmented Limit Lines: A total of 20 segments (10 upper and 10 lower) can be generated per data trace. Complete segmented traces can be offset in both frequency and amplitude.

Test Limits: Both single and segmented limits can be used for PASS/FAIL testing. The active channel's PASS or FAIL status is indicated on CRT after each sweep. In addition, PASS/FAIL status is output through the rear panel I/O connector as selectable TTL levels (PASS=0V, FAIL=+5V, or PASS=+5V, FAIL=0V).

Tune Mode: Tune Mode optimizes sweep speed in tuning applications by updating forward S-parameters more frequently than reverse ones. This mode allows the user to select the ratio of forward sweeps to reverse sweeps after a full 12-term calibration. The ratio of forward sweeps to reverse sweeps can be set anywhere between 1:1 to 10,000:1.

DISPLAY CAPABILITIES

Display Channels: Four, each of which can display any S-parameter or user defined parameter in any format with up to two traces per channel for a maximum of eight traces simultaneously. A single channel, two channels (1 and 3, or 2 and 4), or all four channels can be displayed simultaneously. Channels 1 and 3, or channels 2 and 4 can be overlaid.

Monitor: Color, 7.5-inch diagonal, VGA display or 8.4-inch diagonal LCD. The default color configuration is as follows: graticules are displayed in green, measurement data in red, markers and limits in blue, and overlaid trace data in yellow. Trace data stored in memory are displayed in green.

Trace Color: The color of display traces, memory, text, markers and limit lines are all user definable.

Trace Overlay: Displays two data traces on the active channel's graticule simultaneously. The overlaid trace is displayed in yellow and the primary trace is displayed in red.

Trace Memory: A separate memory for each channel can be used to store measurement data for later display or subtraction, addition, multiplication or division with current measurement data.

Scale Resolution (minimum):

Log Magnitude: 0.001 dB/div Linear Magnitude: 1 pU Phase: 0.01° Group Delay: 0.001 ps Time: 0.001 ms Distance: 0.1 mm SWR: 1 pU Power: 0.05 dB Autoscale: Automatically sets Resolution and Offset to fully display measurement data.

Reference Position: Can be set at any graticule line.

Annotation: Type of measurement, vertical and horizontal scale resolution, start/stop or center/span frequencies, and reference position.

Blank Frequency Information: Blanking function removes all references to displayed frequencies on the CRT. Frequency blanking can only be restored through a system reset or GPIB command.

MEASUREMENT ENHANCEMENT

Data Averaging: Averaging of 1 to 4096 averages can be selected. Averaging can be toggled on/off with front panel button. A front panel button turns data averaging on/off, and a front panel LED indicates when averaging is active.

Video IF Bandwidth: Front panel button selects four levels of video IF bandwidth. MAXIMUM (10 kHz), NOR-MAL (1 kHz), REDUCED (100 Hz) and MINIMUM (10 Hz). Trace Smoothing: Functions similarly to Data Averaging but computes an average over a percentage range of the data trace. The percentage of trace to be smoothed can be selected from 0 to 20% of trace. Front panel button turns smoothing on/off, and front panel LED indicates when smoothing is active.

SOURCE CONTROL

Frequency Resolution:1 kHz (1 Hz standard on RF
units and optional on Microwave units - Option 10A)Source Power Level:The source power (dBm) may be
set from the 372XXB front panel menu or via GPIB.Refer to Level Control Range table on next page.Power Accuracy: ± 0.5 dB at 2 GHz at default power.Level Test Port Power:The power, at all sweep frequencies, is leveled to within

±1.5dB (0.0225–13.5 GHz)

±2.0dB (13.5–20 GHz) ±3.0 dB (20–40 GHz)

±3.0 dB (20–40 GHZ)

Power Meter Correction: The 372XXB offers a user-selectable feature that corrects for test port power variations and slope (on Port 1) using an external Hewle-tt-Packard 437B or Anritsu ML8403 power meter. Power meter correction is available at a user-selectable power level, if it is within the power adjustment range of the internal source. Once the test port power has been flattened, its level may be changed within the remaining power adjustment range of the signal source.

Set-On Receiver Mode: The 372XXB can be configured to measure the relative harmonic level of test devices with Set-On Receiver Mode capability. The 372XXB's unique phase locking scheme allows it to operate as a tuned receiver by locking all of its local oscillators to its internal crystal reference oscillator. Set-On Receiver Mode capability significantly increases the versatility of the 372XXB VNA in applications that check for harmonics, intermodulation products, and signals of known frequency.

PERFORMANCE SPECIFICATIONS

Dual Source Control Capability: Dual Source Control capability allows a user to independently control the frequencies of two sources and the receiver without the need for anexternal controller. The frequency ranges and output powers of the two sources may be specified. A frequency sweep may be comprised of up to five separate bands, each with independent source and receiver settings, for convenient testing of frequency translation devices such as mixers. Up to five sub-bands may be tested in one sweep. This feature enables users to easily test mixers, up/down converters, multipliers, and other frequency conversion devices.

Source 1: The 372XXB internal source.

Source #2: Any of ANRITSU's family of 68000B, 68100B, 68200B, 68300B, 69XXXA, or 6700B synthesizers.

Sweep Type: Linear, CW, Marker, or N-Discrete point sweep.

POWER RANGE

Model	Rated Power (dbm)	Minimum Power (dBm)	Resolution (dB)
37217B	0	-20	0.05
37225B	0	-20	0.05
37247B	0	-20	0.05
37269B	-15	-27	0.05
37297B	-7	-19	0.05

LEVEL CONTROL RANGE

	37217B	37225B	37247B	37269B	37297B
Above Reset Power*	+10 dB	+10 dB	+10 dB	+20 dB	+20 dB
Below Reset Power	-20 dB	-20 dB	-20 dB	-12 dB	-20 dB <47 GHz -12 dB ³47 GHz

*Source power above the reset level is allowed but not guaranteed, especially over the full frequency range.

POWER FLATNESS

Frequency Range (GHz)	Flatness (dB)
0.0225 to 13.5	1.5
13.5 to 20	2.0
20 to 40	3.0
40 to 65	5.0

SOURCE PURITY

(Specifications apply for all models at maximum rated power.)

Harmonics & Harmonic Related:

35 dBc (37217B, 37225B, 37247B, 37269B)

15 dBc (37297B)

Nonharmonics: 35 dBc (standard)

Phase Noise: >60 dBc/Hz at 10 kHz offset and 20 GHz center frequency

SOURCE FREQUENCY ACCURACY

Standard Time Base:

Aging: $<1 \times 10^{-6}/year$ **Stability:** $<1 \times 10^{-6}$ over $+15^{\circ}$ C to $+50^{\circ}$ C range

High Stability Time Base (Option 10):

Aging: <1 x 10⁻⁹/day **Stability:** <5 x 10⁻⁹ over 0°C to +55°C range

GROUP DELAY CHARACTERISTICS

Group Delay is measured by computing the phase change in degrees across a frequency step by applying the formula:

 $1/\frac{1}{360}\frac{d}{df}$ g

Aperture: Defined as the frequency span over which the phase change is computed at a given frequency point. The aperture can be changed without recalibration. The minimum aperture is the frequency range divided by the number of points in calibration and can be increased to 20% of the frequency range without recalibration. The frequency width of the aperture and the percent of the frequency range are displayed automatically.

Range: The maximum delay range is limited to measuring no more than +180° of phase change within the aperture set by the number of frequency points. A frequency step size of 100 kHz corresponds to 10 ms.

Measurement Repeatability (sweep to sweep): For continuous measurement of a through connection, RSS fluctuations due to phase and FM noise are:

141 [(Phase Noise in deg)² ($_{g}$ Residual FM Noise in Hz)²] ^{0.5} 360 (Aperture in Hz)

Accuracy:

Error in		\ Error in Phase (deg)	r	Aporturo Frog Error (Hz)	1
	g	360	L g	Apendie neg Enor (nz)	(112)]
		Aperture	(Hz)		

VECTOR ERROR CORRECTION

There are five methods of calibration:

1) Open-Short-Load (OSL). This calibration method uses short circuits, open circuits, and terminations (fixed or sliding)

2) Offset-Short (waveguide): This calibration method uses short circuits and terminations.

3) LRL/LRM: The Line-Reflect-Line (LRL) or Line-Reflect-Match (LRM) calibration uses transmission lines and a reflective device or termination (LRM).

4) TRM: The Thru-Reflect-Match calibration uses short circuits and fixed termination.

5) AutoCal: The VNA will serially drive an external AutoCal module to perform a 2-port OSLT calibration. AutoCal is a single two port calibration module with built-in, switched, and characterized OSLT standards. AutoCal provides quick, reliable, and accurate calibrations that exceed the performance of a standard broadband load OSLT calibration.

There are four vector error correction models available:

- 1) Full 12-Term
- 2) One Path/Two Port
- 3) Frequency Response (Transmission/Reflection)

4) Reflection Only Full 12-term can always be used, if desired, since all 372XXB-series models automatically reverse the test signal. Front-panel display indicates the type of calibration stored in memory. Front-panel button selects whether calibration is to be applied, and an LED lights when error correction is being applied.

There are four vector error correction models available:

- 1) Full 12-Term
- 2) One Path/Two Port
- 3) Frequency Response (Transmission/Reflection) 4) Reflection Only

Full 12-term can always be used, if desired, since all 372XXB-series models automatically reverse the test signal. Front-panel display indicates the type of calibration stored in memory. Front-panel button selects whether calibration is to be applied, and an LED lights when error correction is being applied.

Calibration Sequence: Prompts the user to connect the appropriate calibration standard to Port 1 and/or Port 2. Calibration standards may be measured simultaneously or one at a time.

Calibration Standards: For coaxial calibrations the user selects SMA, GPC-3.5, GPC-7, Type N, 2.4 mm, TNC, K, or V Connector from a calibration menu. Use of fixed or sliding loads can be selected for each connector type.

User defined calibration standards allow for entry of open capacitance, load and short inductances, load impedance, and reflection standard offset lengths.

Reference Impedance: Modify the reference impedance of the measurement to other than 50 ohms (but not 0). LRL/LRM Calibration Capability: The LRL calibration technique uses the characteristic impedance of a length of transmission line as the calibration standard. A full LRL calibration consists merely of two transmission line measurements, a high reflection measurement, and an isolation measurement. The LRM calibration technique is a variation of the LRL technique that utilizes a precision termination rather that a second length of transmission line. A third optional standard, either Line or Match, may be measured in order to extend the frequency range of the calibration. This extended calibration is achieved by mathematically concatenating either two LRL, two LRM, or one LRL and one LRM calibration(s). Using these techniques, full 12-term error correction can be performed on the 372XXB VNA. Adapter Removal Calibration: Built-in Adapter Removal application software accurately characterizes and "removes" any adapter used during calibration what will not be used for subsequent device measurements. This technique allows for accurate measurement of non-insertable devices.

Dispersion Compensation: Selectable as Coaxial (non-dispersive), Waveguide, or Microstrip (dispersive). **Reference Plane:** Selectable as Middle of line 1 or Ends of line 1.

Corrected Impedance: Determined by Calibration Standards.

HARD COPY

Printer: Menu selects full screen, graphical, tabular data, S2P or Text output, and printer type. The number of data points of tabular data can be selected as well as data at markers only. Compatible with the 2225C InkJet, HP QuietJet, HP 310/320/340 DeskJet, HP 500 Deskjet, HP 560C DeskJet (b/w only), HP LaserJet II, III, & IV Series, and some Epson compatible printers with Parallel (Centronics) interfaces.

GPIB Plotters: The 37XXX VNA is compatible with HP Models 7440A, 7470A, 7475A, and 7550A (in standard mode) and Tektronix Model HC100 plotters. Menu selects plotting of full or user-selected portions of graphical data. Plotter is connected to the dedicated GPIB bus.

Performance: After selecting the Start Print button, front panel operation and measurement capability is restored to the user within 2 seconds.

STORAGE

Internal Memory: Ten front panel states (setup/calibration) can be stored and recalled from non-volatile memory locations. The current front panel setup is automatically stored in non-volatile memory at instrument power-down. When power is applied, the instrument returns to its last front panel setup.

Internal Hard Disk Drive: Used to store and recall measurement and calibration data and front-panel setups. All files are MS-DOS compatable. File names can be 1 to 8 characters long, and must begin with a character, not a number. Extensions are automatically assigned. External SCSI Interface: Option 4 deletes the internal

hard disk drive, and adds a SCSI Interface connector to the rear panel for connecting a SCSI-2 formatted hard disk drive.

Internal Floppy Disk Drive: A 3.5-inch diskette drive with 1.44 Mbytes formatted capacity is used to load measurement programs and to store and recall measurement and calibration data and front panel setups. All files are MS-DOS compatable. File names can be 1 to 8 characters long, and must begin with a character, not a number. Extensions are automatically assigned.

Measurement Data: 102.8 kbytes per 1601 point S-parameter data file.

Calibration Data: 187.3 kbytes per 1601 point
S-parameter data file (12-term cal plus setup).
Trace Memory File: 12.8 kbytes per 1601 point chan-

GPIB

GPIB INTERFACES - 2 PORTS

nel.

System GPIB (IEEE-488.2): Connects to an external controller for use in remote programming of the network analyzer. Address can be set from the front panel and can range from 1 to 30.

Interface Function Codes: SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP1, DT1, DC0, C0.

Dedicated GPIB: Connects to external peripherals for network analyzer controlled operations (e.g. GPIB plotters, frequency counters, frequency synthesizers, and power meters).

GPIB Data Transfer Formats: ASCII, 32-bit floating point, or 64-bit floating point. 32-bit and 64-bit floating point data can be transferred with LSB or MSB first.

GPIB DATA COLLECTION SUMMARY

This section summarizes typical data collection times for automated measurements using the 37XXX IEEE 488.2 GPIB bus. Throughput measurements for both tables were made as follows: start the timer, trigger a sweep, wait for a full sweep, transfer data across the GPIB and stop the timer. Data throughput times are shown separately for measurements made without calibration and with full two-port, 12-term calibration.

Data Transfer Speed (with or without cal): 62 kbytes/second

Measurement conditions: 40 MHz to 20 GHz sweep, single channel, log magnitude display, 10 kHz IF bandwidth, and output final data.

Throughput Times (ms) without Correction (typical)

Data Format	3 Points*	101 Points	401 Points	1601 Points
32 Bit	230	830	2100	7000
64 Bit	230	850	2700	7100
ASCII	235	1000	2400	8000

Throughput Times (ms) with Correction (typical)

Data Format	3 Points*	101 Points	401 Points	1601 Points
32 Bit	340	1200	2600	7800
64 Bit	350	1200	2700	8300
ASCII	350	1280	3000	9300

GENERAL

372XXB Front Panel Connectors and Controls:

Keyboard Input: An IBM-AT compatible keyboard can be connected to the front panel for navigating through front panel menus and disk directories, annotation of data files and display labels, printing displays and pausing instrument sweeps.

Test Ports: Universal/K, male, connectors are standard on all models except for 37297B, which uses V Connectors. For other configurations check Option 7. For additional configurations check Test Port Converters.

37200B Rear Panel Connectors and Controls:

PRINTER OUT: Centronics interface for an external printer.

VGA OUT: Provides VGA output of 372XXB video display.

10 MHz REF IN: Connects to external reference frequency standard, 10 MHz, +5 to –5 dBm, 50 ohms, BNC female.

10 MHz REF OUT: Connects to internal reference frequency standard, 10 MHz, 0 dBm, 50 ohms, BNC female.

EXT ANALOG OUT: -10V to +10V with 5 mV resolution, varying in proportion to user-selected data (e.g., frequency, amplitude). BNC female.

EXT ANALOG IN: ± 50 volt input for displaying external signals on the CRT in Diagnostics mode. BNC female.

LINE SELECTION: Power supply automatically senses 100V, 120V, 220V or 240V lines.

EXTERNAL TRIGGER: External triggering for 372XXB measurement, $\pm 1V$ trigger. 10 kohm input impedance. BNC female.

REFERENCE EXTENSION: Provides access to the a1 sampler (optional); K or V Connector, female.

EXTERNAL SCSI: Provides SCSI-2 connector for connection of an external SCSI hard disk drive (Opt. 4). **EXTERNAL I/O:** 25-pin DSUB connector.

EXTERNAL SCSI: Provides SCSI-2 connector for connection of an external SCSI hard disk drive (Opt. 4).

SERIAL: Provides control for AutoCal module.

LIMITS PASS/FAIL: Selectable TTL levels (Pass=0V, Fail=+5V or Pass=+5V, Fail=0V. Additionally, 0 volts (all displayed channels pass) or +5V (any one of 4 displayed channels fail) output pass/fail status (1 line).

EXTERNAL TRIGGER: External triggering for 372XXB measurement, $\pm 1V$ trigger. 10 kohm input impedance. BNC female.

EXT ANALOG OUT: -10V to +10V with 5 mV resolution, varying in proportion to user-selected data (e.g., frequency, amplitude). BNC female.

Power Requirements: 85-240V, 48-63 Hz, 540 VA maximum

Dimensions: 267H x 432W x 585D mm (10.5H x 17W x 23D in.)

Weight: 34 kg (75 lb) - Maximum amount specified for 2-man lift requirement.

ENVIRONMENTAL

Storage Temperature Range: -40°C to +75°C Operating Temperature Range: -0°C to +50°C Relative Humidity: 5% to 95% at +40°C EMI: Meets the emissions and immunity requirements of EN55011/1991 Class A/CISPR-11 Class A EN 50082-1/1993

IEC 801-2/1984 (4 kV CD, 8kV AD) IEC 1000-4-3/1995 (3 V/m, 80-1000 MHz) IEC 801-4/1988 (500V SL, 1000V PL) IEC 1000-4-5/1995 (2 kV L-E, 1kV L-L)

HIGH SPEED TIME (DISTANCE) DOMAIN MEASUREMENT CAPABILITY (OPTION 2A)

Option 2A, High Speed Time (Distance) Domain software allows the conversion of reflection or transmission measurements from the frequency domain to the time domain by application of a Fast Fourier Transform (FFT) using the Chirp Z-Transform technique. Prior to conversion any one of several selectable windowing functions may be applied. Once the data is converted to the time domain, a gating function may be applied to select the data of interest. The processed data may then be displayed in the time domain with display start and stop times selected by the user or in the distance domain with display start and stop distance selected by the user. The data may also be converted back to the frequency domain with a time gate to view the frequency response of the gated data.

Lowpass Mode: This mode displays a response equivalent to the classic TDR (Time Domain Reflectometer) response of the device under test. Lowpass response may be displayed in either the impulse or step mode. This type of processing requires a sweep over a harmonic series of frequencies and an extrapolated or user-entered DC value. **Bandpass Mode:** This mode displays a response equivalent to the time response of the device under test to a band limited impulse. This type of processing may be used with any arbitrary frequency sweep range, limited only by the test set range or device under test response.

Phasor Impulse Mode: This mode displays a response similar to the Lowpass impulse response, using data taken over an arbitrary (band limited) sweep range. Detailed information, similar to that contained in the lowpass impulse response may be used to identify the nature of impedance discontinuities in the device under test. Now, with Phasor Impulse, it is possible to characterize complex impedances on band-limited devices.

Windowing: Any one of four window functions may be applied to the initial frequency data, to counteract the effects of processing data with a finite bandwidth. These windows provide a range of tradeoffs of main lobe width versus sidelobe level (ringing).

The general type of function used is the Blackman-Harris window with the number of terms being varied from one to four. Typical performance follows:

Types of Window (Number of Terms)	First Side Lobe Relative to Peak	Impulse Width ¹
Rectangular (1)	–13 dB	1.2W
Nominal-Hamming (2)	–43 dB	1.8W
Low Side Lobe, Blackman-Harris (3)	-67 dB	2.1W
Minimum Side Lobe, Blackman-Harris (4)	-92 dB	2.7W

¹ W(Bin Width) = 1/2Df sweep width

Example: When Df = 40 MHz to 40 GHz, W = 12.5 ps

When Df = 40 MHz to 65 GHz, W = 7.7 ps

Gating: A selective gating function may be applied to the time domain data to remove unwanted responses, either in a pass-band or reject-band (mask). This gating function may be chosen as the convolution of any of the above window types with a rectangular gate of user defined position and width. The gate may be specified by entering start and stop times or center and span. The gated data may be displayed in the time domain, or converted back to the frequency domain.

Time Domain Display: Data processed to time domain may be displayed as a function of time or as a function of distance, provided the dielectric constant of the transmission media is entered correctly. In the case of dispersive media such as waveguide or microstrip, the true distance to a discontinuity is displayed in the distance mode. The time display may be set to any arbitrary range by specifying either the start and stop times or the center time and span. The unaliased (non-repeating) time range is given by the formula:

UnaliasiedRange (ns) Number of Frequency Data Points Frequency Sweep Range (GHz)

The resolution is given by the formula:

Main Lobe Width (null \ null) in ns

kW Freq Sweep Range (GHz)

Where kW is two times the number of window terms (for example, four for a two-term window) For a 40 GHz sweep range with 1601 data points, the unaliased range is 40.025 nanoseconds. For a 65 GHz sweep with 1601 data points, the unaliased range is 24.646 nanoseconds.

Frequency with Time Gate: Data that has been converted to time domain and selected by the application of gating function may be converted back to the frequency domain. This allows the display of the frequency response of a single element contained in the device under test. Frequency response accuracy is a function of window and gate type, and gate width. For a full reflection, minimum gate and window accuracy is within 0.2 dB of the ungated response.

MEASUREMENT UNCERTAINTY

The graphs on pages C-9 through C-11 give measurement accuracy after 12-term vector error correction. The errors are worst case contributions of residual directivity, load and source match, frequency response, isolation, network analyzer dynamic accuracy, and connector repeatability. In preparing the following graphs, 10 Hz IF bandwidth and averaging of 512 points were used (measured at $23\pm3^{\circ}$ C). Changes in the IF bandwidth or averaging can result in variations at low levels.

^{*} Upgrades from RF to microwave models maintain 1 Hz frequency resolution cabability

PERFORMANCE SPECIFICATIONS

Model 37247B (K Connectors) Reflection Measurements:

Model 37247B (K Connectors) Transmission Measurements:

372XXB MM

PERFORMANCE SPECIFICATIONS

-20 -1 DEVICE S11 (DB)

-15

-10

-5

0

APPENDIX D

Model 37269B (K Connectors) Reflection Measurements:

Model 37269B (K Connectors)

-70

-60

-50

-90

-80

-40

DEVICE S21 (DB)

-30

-10

-20

10

0

372XXB MM

1 +

-40

-35

-30

-25

PERFORMANCE SPECIFICATIONS

Model 37297B (V Connectors) Reflection Measurements:

RE LECTION MAGNITUDE UNCERTAINTY

RE LECTION PHASE UNCERTAINTY 37X97A/B/3654B/RE LECTION ONLY

Model 37297B (V Connectors) Transmission Measurements:

TRANSMISSION MAGNITUDE UNCERTAINTY 37X97A/B/3654B/TRANSMISSION ONLY

TRANSMISSION PHASE UNCERTAINTY 37X97A/B/3654B/TRANSMISSION ONLY

SYSTEM OPTIONS

OPTION 1, Rack Mounting: Rack mount kit containing a set of track slides (90 tilt capability), mounting ears, and front panel handles to let the instrument be mounted in a standard 19-inch equipment rack.

OPTION 1A, Rack Mounting: Rack mounting kit containing a set of mounting ears and hardware to permanently mount instrument in a standard 19-inch equipment rack.

OPTION 2, High Speed Time (Distance) Domain Measurement Capability

OPTION 3, 1 Hz Frequency Resolution: Deleted **OPTION 4, External SCSI-2 Hard Disk Drive Compatibility:** Provides SCSI-2 rear panel connector for connection of an external SCSI HDD. Remove internal HDD.

OPTION 7A/N/NF/S/K, Universal Test Port Configuration Replaces Universal/K Connector (standard) with:

- 7A Universal/GPC-7
- 7N Universal/N, male
- 7NF Universal/N, female
- 7S Universal/3.5 mm, male

OPTION 10A, High Stability Time Base: Replaces the standard temperature compensated crystal oscillator (with a temperature stability of 1ppm over a 0 to 55 °C range) with an ovenized crystal oscillator (aging stability of 1×10^{-9} /day and temperature stability 5×10^{-9} over 0 to 55 °C range). Adds 1 Hz frequency resolution.

OPTION 11, Reference Loop: Reference loop to the a₁ sampler; K or V Connector, female.

UPGRADE OPTIONS*

37200A Upgrade to a higher frequency 37200A.

37200A Upgrade to an equivalent or higher frequency 37300A.

37200B Upgrade to a higher frequency 37200B.

37200B Upgrade to an equivalent or higher frequency 37300A.

37300A Upgrade to a higher frequency 37300A.

Please call your Anritsu representatives for pricing and delivery.

ON-SITE SUPPORT

Option ES 31: 3 year on-site repair.

Option ES 37: 3 year on-site verification

Option ES 38: 3 year on-site Mil-Std verification

Option ES 51: 5 year on-site repair.

Extended Service Options Additional, two year and four year return to Anritsu service is available, as an option for 372XXB systems and components. Prices and details are available from your Sales Representative or by contacting the factory.

CALIBRATION KITS

Standard

3650 SMA/3.5 mm Calibration Kit Option 1: Male and Female Sliding Terminations

3651 GPC-7 Calibration Kit

Option 1: Sliding Terminations

3652 K Connector Calibration Kit

Option 1: Male and Female Sliding Terminations

3653 Type N Calibration Kit

3654B Type V Calibration Kit; includes male & female sliding terminations

Economy (8.6 GHz) 3750 SMA Calibration Kit 3751 GPC-7 Calibration Kit 3753 Type N, 50 W, Calibration Kit 3753-75 Type N, 75 W, Calibration Kit

VERIFICATION KITS

3663 Type N Verifications Kit 3666 3.5 mm Verifications Kit 3667 GPC–7 Verifications Kit 3668 K Connector Verifications Kit 3669B V Connector Verifications Kit

SEMI-RIGID TEST PORT CABLES

3670A50-1, DC to 18 GHz, GPC–7 connectors, 1 foot long, two required.

3670A50-2, DC to 18 GHz, GPC–7 connectors, 2 feet long.

3670K50-1, DC to 40 GHz, K connectors, 1 foot long, male/female, two required.

3670K50-2, DC to 40 GHz, K connectors, 2 feet long, male/female.

3670V50-1, DC to 65 GHz, V connectors, 1 foot long, male/female, two required.

3670V50-2, DC to 65 GHz, V connectors, 2 feet long, male/female.

FLEXIBLE TEST PORT CABLES

3671A50-1 GPC-7 Flexible Cables, 25 in. (1 pair). **3671A50-2 GPC-7 Flexible Cable,** 38 in.

3671S50-1 3.5mm Flexible Cables, 25 in. (1 pair), male/male.

3671S50-2 3.5mm Flexible Cable, 38 in., male.

3671K50-1 K Connector Flexible Cables, 25 in. (1 pair), male/male.

3671K50-2 K Connector Flexible Cable, 38 in., male.

PERFORMANCE SPECIFICATIONS

3671V50-1 Universal Test Port Converter On Each Side, moving the VNAs V-type test port converter to the

end of the cable, 25 in., 2 eacH. 3671V50-2 Universal Test Port Converter On Each

Side, moving the VNAs V-type test port converter to the end of the cable, 38 in., 1 each.

NOTE: All 3671-Series flexible test port cables mate to the standard 34UK50 Universal K Connector Test Port.

TEST PORT CONVERTERS

34UA50 Test Port Converter, Universal/GPC-7 **34UK50 Test Port Converter**, Universal/K Connector, male

34UN50 Test Port Converter, Universal/N, male
34UNF50 Test Port Converter, Universal/N, female
34UQ50 Test Port Converter, Universal/2.4 mm, male
34US50 Test Port Converter, Universal/3.5 mm. male
01-202 Wrench, for changing test set Test Port Converters.

GPIB CABLES

2100-1 GPIB Cable, 1 m (3.3 ft.) **2100-2 GPIB Cable,** 2 m (6.6 ft.) **2100-4 GPIB Cable,** 4 m (13.2 ft.) **2100-5 GPIB Cable,** 0.5 m (1.65 ft.)

ACCESSORIES

2000-660 HP 310 Deskjet Printer, Printer Stand, Deskjet Printer Cartridge and Power cord. 2000-661 Extra Printer Cartridge 2000-662 Rechargeable Battery 2000-663 Power Cable, Europe 2000-664 Power Cable, Australia 2000-665 Power Cable, U.K. 2000-666 Power Cable, Japan 2000-667 Power Cable, South Africa 2225-1 Spare Parallel Interface Printer Cable

Appendix E Performance Verification Software User's Guide

This appendix contains the Model 360X/37XXX Vector Network Analyzer Performance VerificationSoftware User's Guide. This user's guide provides technical data and procedures that can aid you in performing maintenance on the 372XXB. Subject Index

Subject Index

Number

37377A/37397A Source Lock Signal Path Diagram5 - 27 37377A/37397A Test Signal Path Diagram 5 - 26 A A21A2 ADJUSTMENT (37377A/37397A) 6 - 13,6 -14 A8 ADJUSTMENT (37377A/37397A) 6 - 12 Adjustments A21A2 (37377A/37397A) · · · · · · 6 - 13 A8 (37377A/37397A) · · · · · · · · 6 - 12 Frequency Calibration · · · · · · · · 6 - 5 Introduction to 6 - 3 RF Power/ALC Calibration · · · · · 6 - 8 Source Lock Threshold 6 - 11 **ANRITSU Service Centers** 1 - 9.2 - 4

B

BBRAM Chip, Remove & Replace	8 - 6
Boot-up Problems	5 - 7

С

Calibration and Measurement Conditions 4 - 3	3
Checking the Service Log 3 - 4	4
Cleaning Connectors C - 3	5
Connector Maintenance C - S	3
Cleaning \cdot · · · · · · · · · · · · · · · · · · ·	5
Mechanical Shock · · · · · · · · · · · · · · · · · · ·	4
Pin Depth Problems	3
Pin Depth Tolerances · · · · · · · · · C - ·	4
Precautions · · · · · · · · · · · · · · · · · · ·	3
Repair/Maintenance · · · · · · · · · C - :	5
Teflon Tuning Washer	4
Torque····C································	4
Visual Inspection · · · · · · · · · · · · C - 8	5
Consummsable Parts 2 - 7	7
CRT Display Test 3 - 0	6
_	

D

Diagnostic Menus	A - 3
Disk Related Error Messages	B - 3

E

Electro-static discharge procedures 1 - 9 Error Code DE Lock Failure Troubleshooting 5 -14

Error Codes	5 - 10
Error Messages	B - 3
Disk Related · · · · · · · · · · · · ·	· B - 3
GPIB Related • • • • • • • • • • • • •	· B - 3
Service Log • • • • • • • • • • • • •	· B - 3
Exchange Assembly Program	2 - 3
External Keyboard Interface Test	3 - 7

F

—	
Factory Repairable Non-Exchange Parts	2 - 8
Failed Assembly Exchange Program	1 - 8
Fan Assembly, Remove & Replace	8 - 21
Field Service Kits	1 - 7
Floppy Disk Drive, Remove & Replace	8 - 17
Floppy Disk Problems	5 - 9
Frequency Calibration Adjustment	6 - 5
Front Panel Assembly, Remove & Replace	8 - 13
Front Panel Test	3 - 7
Functional Assembly Level Troubleshooting	1 - 5

G

GPIB Interface Test	3 - 9
GPIB Related Error Messages	B - 3

H

Hard Disk Problems	5 - 8
--------------------	-------

Ι

Identification Number	1 - 3
Internal Hardware Adjustments and Calib	ration 1
- 5	
Isolation Procedures, Troubleshooting	5 - 19
-	

L

LCD, Remove & Replace	8 - 16

M

Major Assemblies Location Diagram (Bottom	n View)
(Not 37377A or 37397A)	2 - 11
Measurement Environment Considerations	4 - 6
Measurement of Key System Performance Pa	aramet
4 - 6	
Measurement Technique	4 - 7
Miscellaneous /Integrated Assemblies	2 - 7
Module Exchange Program	2 - 3

0

-	
Online Manuals	1 -
Operational Error Messages	B -

3 3

P

Parts Ordering Information	2 - 4
Performance Specifications	1 - 9,1 - 1
Performance Verification	4 - 4
Performance Verification Procedure	4 - 5
Peripheral and Interfaces Tests	3 - 6
Pin Depth	
Problems	· · C - 3
$Tolerances \cdot \cdot$	· · C - 4
Power Supply Module, Remove & Replace	e 8 - 21
Precautions	C - 3
Preventive Service	1 - 6
Printed Circuit Assemblies	2 - 5
Printer Interface Test	3 - 7

R

Rear Panel Assembly, Remove & Replace	8 - 19
Rear Panel PCB, Remove & Replace	8 - 22
Recommended Test Equipment	1 - 9
Related Manuals	1 - 4
Removal and Replacement Procedures	
LCD···············	· 8 - 16
Remove and Replace Procedures	8 - 3
A12 VME Bus Terminator PCB · ·	· 8 - 12
A13-A16 PCBs · · · · · · · · · · ·	· · 8 - 6
A18 Rear Panel PCB \cdot \cdot \cdot \cdot \cdot \cdot \cdot	· 8 - 22
A1-A9 PCBs · · · · · · · · · · · ·	· · 8 - 6
A9 PCB BBRAM Chip	· · 8 - 6
A9 PCB SRAM Battery	· 8 - 10
Covers · · · · · · · · · · · · · · · · · · ·	· · 8 - 4
Equipment Required • • • • • •	· · 8 - 3
Fan Assembly	· 8 - 21
Floppy Disk Drive	· 8 - 17
Front Panel Assembly · · · · · ·	· 8 - 13
H/W (Hardware) Calibrations	· · A - 5
Installed Options	· · A - 4
Operational · · · · · · · · · · · ·	· · B - 3
Peripheral Tests	· · A - 4
Power Supply Module • • • • • •	· 8 - 21
Read Service Log · · · · · · · ·	· · A - 3
Rear Panel Assembly · · · · · ·	· 8 - 19
Signal Source Module Assemblies	· 8 - 29
Start Self Test \cdots \cdots \cdots	· · A - 3
Test Set Module Assemblies	· 8 - 25
$Troubleshooting \cdots \cdots \cdots \cdots$	· · A - 4
VGA Display Monitor · · · · 8 - 1	14,8 - 16

Replacable Subassemblies and Parts	2 - 3
RF Power/ALC Calibration Adjustment	6 - 8
3	
S	
Scope of Manual	1 - 3
Screen Display Problems	5 - 10
Self Test	3 - 5
Service Centers	1 - 9
service log	B - 3
Service Log 3 - 3,3 - 4,3 -	5,5 - 12
Service Log Error Messages	B - 3
Service Logt	1 - 5
Service Software	1 - 7
Service Strategy	1 - 5
Service Support Information	1 - 6
Servicing Specially Modified Instruments	1 - 6
Signal Path Tests	3 - 10
Signal Source Module RF/Microwave Com	ponents2
- 8	
Signal Source Modules, Remove & Replace	8 - 29
Signal Source Problems	5 - 17
Signal Source/Test Set Problems	
Introduction to · · · · · · · · · ·	· 5 - 18
SOURCE LOCK THRESHOLD	6 - 11
S-parameter	4 - 3
Special Precautions	4 - 4
Specifications, Performance 1	- 9,1 - 1
SRAM Battery, Remove & Replace	8 - 10
Standard Conditions	4 - 3
Standard Options	1 - 4
Static Sensitive Component Handling Proc	edure 1
- 9	
System Description	1 - 4
A13 I/O Interface #1 PCB · · · · ·	• 7 - 15
A14 I/O Interface #2 PCB · · · · ·	• 7 - 15
A15 Graphic Processor PCB · · · ·	· 7 - 16
A16 Hard Disk PCB · · · · · · ·	· 7 - 16
A17 System Motherboard • • • • •	· 7 - 16
A18 Rear Panel Interface PCB $\cdot \cdot$	• 7 - 17
A24 VME Bus Terminiator PCB \cdot	· 7 - 16
A5 A/D Converter PCB · · · · ·	· 7 - 12
A7 PCB, $LO3 \cdot \cdot$	· 7 - 12
A8, Source Lock/Signal Separation	& Con-
trol	. 7 - 11

A9 Main Processor PCB7 - 13Analog Subsystem Assemblies7 - 7Digital Subsystem Assemblies7 - 13Front Panel Assembly7 - 16Froppy Disk Drive7 - 16IF Section7 - 11

INDEX

Internal VGA Monitor · · · · · · · 7 - 19
Main Chassis Assemblies · · · · · 7 - 16
Overview \cdot · · · · · · · · · · · · · · · 7 - 3
Power Supply Module · · · · · · · 7 - 18
Rear Panel Assembly · · · · · · · 7 - 17
Receiver Module · · · · · · · · · · 7 - 10
Signal Source Module · · · · · · · · 7 - 7
Test Set Module · · · · · · · · · · · 7 - 8
System Test Certification 1 - 6

T

—	
Technical Support	1 - 7
Test Fixtures/Aids	1 - 8
Test Set Assembly RF/Microwave Compone	nts,
37317A, 37325A, 37347A, 37369A	2 - 6
Test Set Assembly RF/Microwave Compone	nts,
37377A, 37397A	2 - 6
Test Set Modules, Remove & Replace	8 - 25
Torquing Connectors	C - 4
Troubleshooting	
Association Information · · · · · ·	· 5 - 3
Boot-up Problems · · · · · · · · ·	· 5 - 7
Error Code Problems	· 5 - 10
Floppy Disk Problems · · · · · · ·	· 5 - 9
Functional Level Assembly \cdot \cdot \cdot \cdot	· 1 - 5

Hard Disk Problems $\cdots \cdots \cdots \cdots \cdots 5 - 8$ Introduction to $\cdots \cdots \cdots \cdots \cdots \cdots \cdots 5 - 3$;
Isolation Procedures · · · · · · · · 5 - 19)
Line Source and Interface Checks \cdot · 5 - 4	t
Peripheral Interface · · · · · · · · 5 - 21	
Power Supply Module Check · · · · 5 - 6	,
Power Supply Voltage Check · · · · 5 - 4	ł
Power-up Problems · · · · · · · · · 5 - 4	ł
Questionable Measurements · · · · 5 - 22	;
Recommended Test Equipment · · · · 5 - 4	ł
Screen Display Problems • • • • • 5 - 10)
Signal Source · · · · · · · · · · · · 5 - 17	'
Signal Source/Test Set · · · · · · 5 - 18	5
Tuning Washer C - 4	ł
Typical Reference Signal Values 5 - 25)
Typical SPDT Switch Voltages 5 - 25)
Typical Transfer Switch Voltages5 - 25	,

V

	,
Verification Result Determination 4 - 4	5
Verification Software 4 - 4	4
Verifying Measurement Accuracy 4 - 4	4
VGA Display Monitor, Remove & Replace 8 - 14	4
Visual Inspection of Connectors C -	5
VME Bus Terminator, Remove & Replace 8 - 12	2